Rheology Lab Information

VTT Technical Research Centre of Finland
Soft Matter team, Sustainable Products and Materials research area, Jyväskylä
  • TA Instruments DHR-2 rheometer
  • Brookfield viscometers
  • Custom-built pipe rheometers
  • Flow imaging and velocity profiling combined with rotational and pipe rheometry
  • Wide selection of measurement geometries: parallel plates, cone-and-plate and concentric cylinder geometries with various surface finishes (smooth, sandblasted, crosshatched, serrated). Vane-in-cup geometries are available for the rheological characterization of samples exhibiting wall slip, large particles and/or sensitive microstructure
  • Rheo-optics: transparent measurement geometries for simultaneous rheological characterization and imaging of sample's microstructure with optical coherence tomography (OCT) and digital microscopy
  • Peltier temperature control: parallel plates & cone-and-plate: -40 to 200 °C, concentric cylinder & vane-in-cup: -20 to 150 °C, rheo-optics: -20 to 100 °C
  • 3D-printed measurement geometries: possibility to design and manufacture customized measurement geometries using different 3D printing techniques
  • Modular, customizable pipe rheometers: pressure loss and viscosity measurements on liquids, suspensions and foams in various pipe flow geometries
  • Flow imaging and velocity profiling: analysis of sample microstructure, velocity profile and wall slip in rotational and pipe rheometer measurements using optical coherence tomography (OCT), ultrasound velocity profiling (UVP) and high-speed video imaging
Information Links
Flow imaging with optical coherence tomography: Koponen, A. I., & Haavisto, S. (2020) Analysis of industry-related flows by optical coherence Tomography—A review. KONA Powder and Particle Journal, 37, 42-63, https://doi.org/10.14356/kona.2020003
Flow imaging with polarization-sensitive optical coherence tomography: Jäsberg, A., Puisto, A., Leppänen, I., Koponen, A. I., & Alava, M. J. (2023) Online detection of orientation of cellulose nanocrystals in a capillary flow with polarization-sensitive optical coherence tomography. Cellulose, 30(6), 3539-3550, https://doi.org/10.1007/s10570-023-05072-4
Velocity profiling rheometry: Kataja, M., Lehto, R., Haavisto, S., Salmela, J., & Koponen, A. (2017) Characterization of micro-fibrillated cellulose fiber suspension flow using multi scale velocity profile measurements. Nordic Pulp & Paper Research Journal, 32(3), 473-482, https://doi.org/10.3183/npprj-2017-32-03-p473-482
Modelling of viscosity and wall slip in multiphase flows: Koponen, A. I., Viitala, J., Tanaka, A., Prakash, B., Laukkanen, O. V., & Jäsberg, A. (2024) Pipe rheology of wet aqueous application foams. Chemical Engineering Science, 283, 119282, https://doi.org/10.1016/j.ces.2023.119282
Olli-Ville Laukkanen (Olli-Ville.Laukkanen@vtt.fi)
Last Updated By
Last Updated
7/13/2024 2:45:37 PM

Back to List