Rheology Lab Information


Country
Finland
University
VTT Technical Research Centre of Finland
Institution
Soft Matter team, Sustainable Products and Materials research area, Jyväskylä
Rheometers
  • TA Instruments DHR-2 rheometer
  • Brookfield viscometers
  • Custom-built pipe rheometers
  • Flow imaging and velocity profiling combined with rotational and pipe rheometry
Accessories
  • Wide selection of measurement geometries: parallel plates, cone-and-plate and concentric cylinder geometries with various surface finishes (smooth, sandblasted, crosshatched, serrated). Vane-in-cup geometries are available for the rheological characterization of samples exhibiting wall slip, large particles and/or sensitive microstructure
  • Rheo-optics: transparent measurement geometries for simultaneous rheological characterization and imaging of sample's microstructure with optical coherence tomography (OCT) and digital microscopy
  • Peltier temperature control: parallel plates & cone-and-plate: -40 to 200 °C, concentric cylinder & vane-in-cup: -20 to 150 °C, rheo-optics: -20 to 100 °C
  • 3D-printed measurement geometries: possibility to design and manufacture customized measurement geometries using different 3D printing techniques
  • Modular, customizable pipe rheometers: pressure loss and viscosity measurements on liquids, suspensions and foams in various pipe flow geometries
  • Flow imaging and velocity profiling: analysis of sample microstructure, velocity profile and wall slip in rotational and pipe rheometer measurements using optical coherence tomography (OCT), ultrasound velocity profiling (UVP) and high-speed video imaging (HSVI)
Information Links
Flow imaging with optical coherence tomography: Koponen, A. I., & Haavisto, S. (2020) Analysis of industry-related flows by optical coherence Tomography—A review. KONA Powder and Particle Journal, 37, 42-63, https://doi.org/10.14356/kona.2020003
Flow imaging with polarization-sensitive optical coherence tomography: Jäsberg, A., Puisto, A., Leppänen, I., Koponen, A. I., & Alava, M. J. (2023) Online detection of orientation of cellulose nanocrystals in a capillary flow with polarization-sensitive optical coherence tomography. Cellulose, 30(6), 3539-3550, https://doi.org/10.1007/s10570-023-05072-4
Velocity profiling rheometry: Kataja, M., Lehto, R., Haavisto, S., Salmela, J., & Koponen, A. (2017) Characterization of micro-fibrillated cellulose fiber suspension flow using multi scale velocity profile measurements. Nordic Pulp & Paper Research Journal, 32(3), 473-482, https://doi.org/10.3183/npprj-2017-32-03-p473-482
Modelling of viscosity and wall slip in multiphase flows: Koponen, A. I., Viitala, J., Tanaka, A., Prakash, B., Laukkanen, O. V., & Jäsberg, A. (2024) Pipe rheology of wet aqueous application foams. Chemical Engineering Science, 283, 119282, https://doi.org/10.1016/j.ces.2023.119282
Contacts
Olli-Ville Laukkanen (Olli-Ville.Laukkanen@vtt.fi)
Last Updated By
Olli-Ville.Laukkanen@vtt.fi
Last Updated
8/24/2024 2:37:01 PM

Back to List

  HIGHLIGHTS

NRC&DRG2025 plenary speaker: Maria Charalambides
We are glad to announce that Prof. Maria Charalambides will give a plenary lecture at the joint Nordic Rheology Conference & DRG Symposium 2025 in Berlin.

Maria Charalambides (PhD, DIC, CEng, FIMechE) is a Professor in Mechanics of Materials at the Department of Mechanical Engineering at Imperial College London. She is the current President of British Society of Rheology. Amongst Maria’s research interests is mechanics of soft solids and particulate polymeric composites, rheological characterisation and modelling of soft solids found in various applications such as in foods, plastic bonded and granular explosives, paints and plastics in art conservation, adhesives, foams and mechanical recycling of plastic packaging. She leads the Soft Solids research group. Maria has published over 100 papers and has received funding from both industry and Research Councils UK. Her published research includes material modelling and mechanical characterisation, micromechanics models of particulate filled composites as well as cellular and porous structures, experimental and numerical modelling of industrial food processes as well as oral and gastric processes and fracture and deformation in paint and adhesive coatings.

Read more and register to the Nordic Rheology Conference & DRG Symposium 2025 here: NRC&DRG2025 webpage
READ MORE

 

  FOLLOW US