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ABSTRACT 
Simultaneous rheometry and FTIR 

spectroscopy proofs to be a useful tool in 
understanding emulsion instabilities on the 
microscopic scale. In this contribution, we 
want to present some results on the 
dynamics of molecular organization of an 
emulsion under shear. 

 
INTRODUCTION 

Emulsions are of wide interest in food, 
pharmaceutical, health care and cosmetics 
industry. They typically consist of at least 
two liquid phases, surfactant agents and 
stabilizers. Emulsions exhibit complex 
rheology, making it difficult to understand 
flow phenomena on a microscopic level. 
A common technique utilized to analyze the 
behavior of emulsions under shear is light 
microscopy. However, emulsions showing 
droplet distributions with droplets on the 
submicron scale cannot be visualized using 
light microscopy because of given 
resolution constraints. Other limiting factor 
of light microscopy include diffraction 
arising from narrowly distributed droplet 
sizes as well as when the diffractive indices 
of stationary and dispersed phase are very 
similar. 

In such cases, the Thermo Scientific 
HAAKE MARS rheometer combined with 
the Rheonaut module, provides 
simultaneous rheometry and in-situ FTIR 
spectroscopy under shear and offers a 

versatile tool for efficient and 
comprehensive emulsion research and 
stability testing. 
 
MATERIALS AND METHODS 

For this study, as model substances, 
three commercially available hand cream 
emulsions with high volume fractions of oil 
in water containing submicron droplets were 
supplied by a manufacturer of cosmetics. 
The samples varied with respect to their 
hydrocarbon composition only. No further 
sample preparation was required. 

The patented Rheonaut module couples a 
standard FT-IR spectrometer with side port 
(here: Thermo Scientific NICOLET iS10) to 
the Thermo Scientific HAAKE MARS 
rheometer. 

The lower plate of the rheometer is 
temperature controlled (Peltier or electrical) 
and features a monolithic diamond element 
that serves as the ATR (attenuated total 
reflection) sensor, offering a single internal 
reflection. Compared to standard infrared 
transmission spectroscopy or specular 
reflection spectroscopy techniques, the 
sample thickness can thus be adjusted to the 
rheological needs and is independent from 
the infrared spectroscopy requirements. 

The operation is managed by the 
HAAKE RheoWin software providing full 
control over temperature settings, horizontal 
positioning of the lower plate, and the 
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Steady shear flow experiments were 
carried out using a cone/plate
geometry with 20 mm diameter and a cone 
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like shear thinning behavior as can be seen 
in the right graphs of figure 
the viscosity plotted double
against shear stress
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the droplets are distributed homogenously, 
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segregation in droplet population and at 
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model showing a droplet deformation and 
stretching by the applied shear, leading to 
droplet rupturing and recombination through 
coalescence at higher shear stresses. 

Simultaneously applied F
spectroscopy enables a more sophisticated 
molecular insight and deeper understanding. 
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CONCLUSIONS 
Rheometry and FT-IR spectroscopy have 

been applied simultaneously on model 
emulsions (3 commercially available hand 
creams) to study the structure development 
of emulsions under shear stress.  

The results prove an ability of the 
investigated emulsions to repair the damage 
caused by mechanical impacts over time.  

The Rheonaut offers a new approach to 
rheology by providing molecular insight and 
can thus reveal information about molecular 
organization and dynamics under 
deformational flow.  

The exact knowledge of the interacting 
fundamental structuring mechanisms creates 
the basis for an optimized tuning of 
technical, process engineering, and material 
parameters with respect to a functionally 
optimized structuring of emulsion systems.  
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