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ABSTRACT
This  article  uses  a  multi-field  Galerkin 

least-squares  (GLS)  method  for 
approximating  flow-type  sensitive  fluid 
flows. A quasi-Newtonian model, based on a 
kinematic  parameter  of  flow  classification 
and  shear  and  extensional  viscosities,  is 
employed  to  represent  the  fluid  behaviour 
from pure shear up to pure extension. Mild 
Weissenberg  flows  of  quasi-Newtonian 
fluids  –  using  Carreau  viscosities  with 
power-law indexes varying from 0.2 to 2.5 – 
are carried out through a four-to-one planar 
contraction.

INTRODUCTION
This  article  addresses  a  class  of  flow-

type sensitive fluids called quasi-Newtonian 
models.  Their  major  features  are  the 
viscosity  function  dependent  of  the  flow 
type and the extra-stress tensor described by 
the  generalized  Newtonian  model  (GNL). 
The  quasi-Newtonian  fluid  flows  herein 
considered  are  approximated  by  a  multi-
field (GLS) method in terms of strain rate, 
pressure and velocity. Due to the addition of 
residual-based  least-squares  terms  of  the 
flow governing equations, the GLS method 
allows  the  use  of  simple  combinations  of 
finite  element  interpolations  and  remains 
stable  even  in  flows  subjected  to  high 
geometric  and  material  non-linearity.  The 
flow  domain  is  4:1  sudden  planar 
contraction  and  the  triple  (D-p-u)  is 
approximated by a combination of bi-linear 

Lagrangian  interpolation  for  pressure,  and 
bi-quadratic ones for strain rate and velocity. 
The bi-quadratic interpolation for the tensor 
D assures an accurate representation of the 
flow classifier,  which  depends on  the  first 
derivatives  of  D.  For  a  relevant  range  of 
Weissenberg number for such a problem (Wi 
from  0  to  0.6),  three  flow-type  sensitive 
fluids are  investigated:  (i)  a shear-thinning 
fluid; (ii) an extension-thickening fluid; (iii) 
and  a  shear-thinning  and  extension-
thickening  fluid.  For  all  fluids,  the 
distribution  of  the  flow  classifier  is 
evaluated,  capturing  both  extensional  flow 
regions in the contraction vicinity and pure 
shear flows far away from the contraction.

THE QUASI-NEWTONIAN MODEL
From  the  usual  momentum  and  mass 

balance  equations  for  a  incompressible 
fluids,  coupled  with  the  GNL constitutive 
equation, a (d-p-u) boundary value problem, 
for  steady  flows  of  purely  viscous  fluids, 
may be stated as:

ρ[∇u ]u−2η(Rr , II D)div d

−2 ∇(η( Rr , II D))⋅d+∇ p=ρg in Ω
d−D(u)=0 in Ω
div u=0 in Ω
u=ug on Γ g

[− p 1+2η(Rr , II D)d ]n=th on Γ h

   (1)

where u is the fluid velocity, p the pressure, 
ρ the  density,  d and  D(u)  are  alternative 
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notations  for  the  strain-rate  tensor,  1 the 
unity tensor, g the gravitational acceleration, 
n the  outward  unity  vector,  th the  stress 
vector and T is stress tensor , T=τ-p1. 

The quasi-Newtonian viscosity function 
considered  herein,  η(Rr,IID),  is  given  by  a 
weighted mean between the shear viscosity 
ηs and the extensional viscosity  ηx, both of 
them  independently  constructed  according 
the Carreau equation,

η=ηs
f (R r)ηx

(1− f (Rr))

ηs=η∞s
+(η0−η∞s

)(1+(λ s γ̇)2)(ns−1)/2

ηx=η∞x
+(η0−η∞x

)(1+(λx γ̇)2)(n x−1)/2

       (2)

where the function f(Rr) in Eq. (2) is the one 
proposed by Ryssel and Brunn1,

f (Rr )=
3sin4(Rrπ/2)

1+2sin4(Rr π/2)
, if 0<Rr<1

f (Rr )=1 , if (Rr>1),

 (3)

and  Rr is  a  flow  classifier  based  on  the 
classifier  RR proposed  by  Thompson  and 
Souza Mendes2,

Rr=
2RR

1+RR
       (4)

and γ̇ and is the magnitude of tensor D,.

NUMERICAL METHOD
From  the  usual  definitions  of  finite 

element subspaces for incompressible fluid 
flows  (Behr  et  al.3),  a  three-field  GLS 
formulation can be written as: given ρg and 
ug, find the triple (d-p-u) such that: 

∫Ω
dh⋅Sh d Ω−∫Ω

D(uh)⋅Sh d Ω−∫Ω
ph div vh d Ω

+∫Ω
ρ [∇ uh]uh⋅vh d Ω+δ∫Ω

div uh div vh d Ω

+∫Ω
div uh qh d Ω+∫Ω

2η (R r , IID)d
h⋅D(vh)d Ω

+ ∑
K ∈Ωh

∫ΩK

( ρ [∇ uh]u h+∇ ph−2η(Rr , II D)div dh+

−2 [dh ]∇ (η(Rr , II D))⋅

⋅α ( Re K )( ρ [∇ vh]uh−∇ qh−2η(Rr , II D)div Sh +

−2 [Sh]∇ (η( Rr , II D))d ΩK

+β ∑
K ∈Ωh

∫ΩK

2η (γ̇ )(d h−D(uh))⋅(Sh−D(vh))d ΩK

=∫Ω
ρ g⋅vh d Ω+∫Γh

t⋅vh d Γ

+ ∑
K ∈Ωh

∫ΩK

ρ g⋅α ( Re K) ( ρ [∇ vh]uh−∇ qh +

−2η(Rr , II D)div Sh−2 [dh]∇ (η(Rr , II D))dΩK

       (5)

with  the  stability  parameters  δ,  α,  and  β, 
associated to continuity,  motion and quasi-
Newton equations, respectively, being given 
by Franca and Frey4 and Behr et al.3.

RESULTS AND DISCUSSION

The geometry considered is a sudden 4:1 
planar contraction, as shown in Fig. 1. For 
all  computations,  a  combination  of  bi-
quadratic/bi-linear/bi-quadratic  finite 
elements (Q2/Q1/Q2) is  used for the triple 
strain  rate,  pressure  and  velocity, 
respectively.  After  a  mesh  independence 
test, a mesh of 4,368 elements is chosen.

Figure 1. The problem statement.

The  characteristic  strain  rate γ̇c is 
assumed to be the relationship between the 
outlet  average  velocity,  u0,  and  the  half- 
height  L/2.  Hence,  a  Deborah  number  for 
flow-sensitive fluids is expressed as (Ryssel 
and Brunn1):



Wi i= i ̇ c=
2i u0

L
       (6)

where  subscript  i is  related  to  extensional 
(i=x)  or  shearing  (i=s)  viscosity  functions 
given by Eq. (2). The Reynolds number,

Re=
ρu0 L

η0s

       (7)

is  set  equal  to  one  in  all  simulated flows, 
and η∞s

and η∞x
are  taken  equal  to  zero. 

Three different flow-type sensitive fluids are 
considered: (i) for  De=0.4, a shear-thinning 
fluid  (ηs=0.1;  ηx=1.0);  (ii)for  De=0.6,  a 
shear-thinning  and  extension-thickening 
fluid (ηs=0.5;  ηx=1.5); and (iii) for  De=0.6, 
an  extension-thickening  fluid  (ηs=1.0; 
ηx=2.5). 

(a)

(b)

Figure  2.  Newtonian  fluid  flow:  (a)  flow 
classifier Rr; (b) flow streamlines.

Figure 2a shows, for a Newtonian fluid, 
the  distribution  of  the  flow  classifier  Rr 

along  the  channel.  It  can  be  noticed  that 
Rr=1 for  most  of  the  channel,  since  the 
Newtonian flow can be classified as a shear-
dominated one. Despite that, at the entrance 
of  the  contraction,  an  extensional  zone 
(Rr=0)  can  be  noticed,  due  to  the  channel 
narrowness. In  addition,  a rigid body zone 
(Rr→2)  can  be  distinguished  near  the 
contraction corner, in which a small vortex 
(since  Re=1)  is  captured—see  flow 
streamlines in Fig. 2b.

In  Fig.  3,  the  dimensionless  viscosity 
field,  η∗=η/η0,  is  presented  for  all  studied 
fluids.  For  the  shear-thinning  fluid 
illustrated  in  Fig.  3a,  it  can  be  verified  a 
viscosity decay (η∗ <1)  near  the  wall  of 
the  smaller  channel,  a  region  subjected  to 
high  shear  rates.  At  entrance  of  the 
contraction,  the  viscosity  does  not  decay, 
since  it  is  a  region  subjected  to  near 
extensional flow, with the flow classifier  Rr 

is  around  zero.  In  Fig.  3b,  for  the  shear-
thinning  and  extension-thickening  fluid,  a 
viscosity increasing (η∗>1) can be noticed at 
the extensional  region near the contraction 
entrance and a viscosity reduction (η∗<1) at 
the shear zone near the wall of the smaller 
channel.  In  Fig.  3c,  for  the  extension-
thickening fluid, a viscosity increase (η∗>1) 
only  occurs  in  the  region  subjected  to  an 
extensional kinematics, i.e., the one near the 
entrance  of  the  contraction.  In  all  other 
regions of Fig. 3c, the viscosity distribution 
remains constant.

(a)

(b)

(c)

Figure 3. Viscosity function: (a)  ηs=0.1 and  η*
s=1.0; 

(b) η*
s=0.5 and η*

x=1.5; (c) η*
s=1.0 and η*

x=2.5.

Figure 4 show transverse profiles of the 
dimensionless velocity u1

∗=u1/u0 , at various 
distances from the  contraction  plane:  (i)  in 
Fig.  4a,  at  a  fully-developed  region 
upstream of the contraction, (ii) in Fig. 4b, 
at a region just upstream of the contraction
— with Fig. 4c depicting a blown-up view 



near the symmetry line; (iii) in Fig. 4d, at a 
region just after the entrance of the smaller 
channel; (iv) in Fig. 4e, at a fully-developed 
region downstream of the contraction.

(a)

(b)

(c)

(d)

(e)

Figure 4. Velocity profiles: (a) x1
*=11L; (b) x1

*=0.5L; 
(c) x1

*=0.5L (detail); (d) x1
*=0.375L, (e) x1

*=2.5L.

In  Fig.  4a,  all  fluids  present  similar 
velocity  profiles  at  the  fully-developed 
region  upstream  of  the  contraction,  since 
velocity  fields  are  not  disturbed  yet  by 
elliptical  effects  originated  from  the 
downstream  contraction.  Even  being  this 
region  a  shear-dominated  one,  the  strain 
rates are not high enough so that the shear-
thinning of the viscosity can differentiate the 
velocity profiles. Fig. 4b seems to suggest a 
similar  pattern  for  the  velocity  profiles. 
However,  the  blown-up  view  near  the 
symmetry  line  (Fig.  4c)  presents  some 
distinctness:  (i)  the  shear-thinning  fluid 
shows  a  flatter  profile;  (ii)  the  shear-
thinning  and  extension-thickening  fluid, 



presents a more elongated profile, with the 
maximum velocity  slightly higher than the 
Newtonian  one;  (iii)  the  extensional-
thickening fluid shows the highest value for 
the maximum velocity at the symmetry line. 
In the contraction region, the flow classifier 
Rr tends  to  zero  at  the  symmetry  line, 
characterizing an extensional region. Hence, 
the viscosity increasing near the symmetry 
line is responsible for the increasing of the 
maximum  velocity,  whereas  the  viscosity 
reduction  renders  flatter  velocity  profiles. 
Finally,  in  Fig.  4d,  it  is  viewed  that  the 
shear-thinning  fluid  produces  the  flattest 
velocity  profile,  since  just  downstream  of 
the contraction the shear rates faced in the 
smaller channel are high enough to cause a 
pronounced shear-thinning behaviour, which 
generates the flatten of the velocity profile
—a  tendency  that  is  more  evident  at  the 
fully-developed  region  downstream  of  the 
contraction (Fig. 4e).

Figure  5  shows  dimensionless  normal 
extra-stress profiles, τ22

∗=(τ22L)/(η0u0), along 
the symmetry line. The extension-thickening 
fluid  presents  the  highest  value  of  the 
normal extra-stress, due to the increasing of 
the extensional viscosity at the entrance of 
the  contraction.  For  the  shear-thinning 
fluid), the normal extra-stress is lower than 
the Newtonian one, in virtue of the shearing 
viscosity reduction near the contraction—a 
decay  that  also  affects  the  extra-stress 
distribution  in  the  extensional  region  at 
symmetry  line.  At  length,  for  the  shear-
thinning and extension-thickening fluid, the 
lower  and  higher  values  faced  by  the 
viscosity  in  shearing  and  extensional 
regions,  respectively,  prescribe  an 
intermediate  behaviour  between  pure 
extensional-thickening  and  pure  shear-
thinning  ones.  Moreover,  τ11

∗  and  τ22
∗ 

profiles  are  opposite  to  each  other,  as 
required by the flow mass conservation for a 
GNL model. This constrain imposed by the 
continuity  equation  leads  to  null  normal 
stress differences along the channel.

Figure 5. τ22
* profiles along the symmetry line.
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