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ABSTRACT
The paper presents the results of numerical

study of the acceleration/stabilization phase of
counter flows of Oldroyd-B and De Witt vis-
coelastic fluids. It is shown that the flow pat-
terns at this stage often involve oscillatory phe-
nomena, in particular, periodic changes of the
flow speed in value and direction.

Comparison of the flows considered with
the initial acceleration phases of simpler vis-
coelastic fluid flows has made it possible
to come to the conclusion that on the non-
stationary stabilization phase a viscoelastic
fluid flow has a wave nature which is under-
lain by the role of the fluid elasticity involving
propagation of the disturbances, cursed by the
walls and the pressure gradient, across the flow
with some speed depending on both the Weis-
senberg and the Reynolds numbers.

INTRODUCTION

One of the characteristic features of counter
flows of viscoelastic fluids within cross-
channels is the fluid high stretches in the vicin-
ity of the stagnation central point. Admit-
tedly, such stretches are a reason of the spe-
cific dynamic features such as patterns of sec-
ondary vortex-like flows, and loss of the flow
symmetry1,2,3. At the same time, it should
be mentioned that in some investigations of
the viscoelastic fluid flows within similar re-
gions absence of such phenomena was also
reported4. Evidently, such a variety takes place
because the characteristics of this kind of flows
are very sensitive to an experiment conditions,
or to the details of the problem statement in the

case of the numerical simulation.
In the present research we focus on theac-

celeration/stabilization phase of the viscoelas-
tic fluid flow within cross-channels applying
physically realistic boundary conditions (for
inlet and outlet pressures). This is the continu-
ation of the research reported earlier5.

PROBLEM STATEMENT

To wider describe a fluid rheological behav-
ior, in addition to the widely usedUCM (Upper
Convective Maxwell) model and its generaliza-
tion, theOldroyd-B model, another representa-
tive of the generalized Maxwell models fam-
ily, the De Witt model (with the Jauman deriva-
tive), was considered.

x

y

Vertical wall

Horizontal wall

pinlet =
t

1+t

poutlet = 0

0 2 4 6 8 10
0

2

4

6

8

10

Figure 1. General layout of the counter flows
(a quarter domain).

Due to the domain symmetry, the problem
was solved in the quarter domain shown in Fig.
1 (previously5, for the sake of analysis of the
solution stability, a similar problem was also
solved in the whole domain, the solution ob-



tained turned out quite symmetric and close to
the one in a quarter domain).

The momentum and continuity equations
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(here and later we mean summation on the re-
peated indexesi, j = 1,2) were solved together
with each of the two rheological models using
the dimensionless variables normalized on the
problem natural scales:

Oldroyd-B model:
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where theOldroyd derivative
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the De Witt model was used for a mono-
component fluid (no solvent) with the theJau-
man derivative
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inserted in Eq. (5) (Rep=Re, σ p
i j=σi j in this

case).
Here σ ,σ p,σ s are the mixture, polymer

base, and solvent stresses,ω is the vorticity
tensor.

As the initial conditions, zero values were
set to all the dependent variables.

The boundary conditions involved increase
of the inlet pressure from 0 up to 1 on the law

pinlet =
αt

1+αt
(8)

to reach a steady flow (cf. Fig. 1), as well
as setting the outlet pressure to 0, no-slip con-
ditions at the wallsuwall = vwall = 0, and the
flows symmetry conditions

u(0,y) = v(x,0)

=
∂u(x,0)

∂y
=

∂v(0,y)
∂x

= 0 (9)

evidently following from the flows field sym-
metry, absence of the momentum flux across
the x,y axes, and Eq. (5) applied to the shear
stressσxy equal to 0 at the axes.

The inlet pressure increase intensity param-
eterα was varied within the limits 1÷10 but
such a change did not essentially affect the
salient features of the below presented results.
All the results shown below involveα = 1. In
this case we will conditionally agree to con-
sider the time in which the time derivative of
the inlet pressure diminishes from its initial
value to a fraction of 1.5 · 10−3 as thestabi-
lization time. It is approximately equal to 24.8.

NUMERICAL SOLUTION,
DYNAMIC FEATURES

The numerical procedure was essentially
based onthe pressure correction method whose
particular implementation was presented in
Mackarov6 together with the formal proof of
its convergence. The use of this procedure was
approved at AERC20105.

First of all, it should be mentioned that
very close solutions for the Oldroyd-B model
with negligent viscosity of the Newtonian sol-
vent (Res ≥ 104·Rep), and the De Witt model
were obtained. All the results in the figures be-
low are given for the mono-component UCM
model. In this case the polymeric component’s
Reynolds number is designatedRe.



This reason of the two models behavior
similarity, missing in other problems, is dis-
cussed in the Conclusions.

The acceleration phase was found to exhibit
specific large-scale flow structures which de-
veloped on two distinguished mechanisms:

Large-scale vortex-like structures

Such structures in the form ofa group of
vortexes (usually three) with opposite rotation
directions (cf. "diwhirls"7, i.e., pairs of vor-
texes rotating in opposite directions) were typ-
ically observed in the case of UCM and low
(≤ 0.1) Reynolds numbers as in Fig. 2. These

x

y

0 1 2 3
0

0.5

1

1.5

2

2.5

3

Figure 2. Large-scale vortexes specific for low
Reynolds numbers, and a one-component

viscoelastic fluid.Re=0.05,Wi=4, t∼= 2.7, the
grid has 1200 nodes

essentially non-stationary flow structures were
found to periodically rise and damp. Fig. 2 il-
lustrates the top of the intensity, with the flow
being like in Fig. 1 between the intensity pics.

It turned out convenient to describe their in-
tensity by a "stability functional", the expres-
sion depending on the time derivatives of the
flow velocities (N is the total number of the

meshi, j nodes):
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Fig 3. shows smooth periodic time dependen-
cies of the observed structures intensity. It
is seen from the figure that with moderateWi
those oscillations damp up almost completely
till the moment of the inlet pressure stabiliza-
tion (it is encircled at the time axis) whereas
with really highWi such kind of the vortexes
intensity oscillations can go on much longer,
most likely because of essential amounts of the
elastic energy accumulated by the fluid.
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Figure 3. Time dependencies of the stability
functional (10) forRe=0.05, andWi = 4, 16,

and 64 (lower, middle, higher curve).
Highlighted is the time moment of the flow
conditions stabilization, the grid has 300

nodes.

Less regular flow restructuring
With higher Reynolds numbers (>1) the

vortex-like structures disturbing the flows in
a non-stochastic manner were no more ob-
served. Instead, as a rule, at some moment
the flows were suddenly disturbed in the high-
stretch region (near the stagnation point) and
got stochastic. This situation is illustrated in
Fig. 4. Evidently it is close enough to the clas-
sical Reynolds instability.

The time dependency of the functional (10)
has also changed: as seen in Fig.5, it is not



oscillatory any more and shows that the flow
acceleration phase in the case of this mecha-
nism usually involves a single "burst" of a dis-
turbance which may later damp to form a regu-
lar flow or develop then up to the complete loss
of stability.
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Figure 4. Beginning of sharp instability
development specific for moderate and high
Reynolds numbers.Re=5, Wi=3, t∼=5.3, the

grid consists of 300 nodes.

With the presence of the Newtonian solvent
with even high Reynolds numbers, or negligent
viscosity (Res ≥ 103Rep) the Oldroyd-B liq-
uid, even with highly viscous viscoelastic base,
could be affected by a switch from the first to
this second mechanism. So an addition of a
Newtonian component can drastically "extin-
guish" specific elastic oscillatory behavior of
the flow at the acceleration phase.

Coming back to the first kind of the found
flow structures that were first reported at
AERC20105, we should point other features of
the flow in this situation.

Further analysis of the solution obtained
demonstrated that between the picks of the vor-
texes intensity shown in Fig.3 the flow changed
it’s general direction.
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Figure 5.Time dependencies of the stability
functional (10) for moderate Reynolds

numbers. Highlighted is the stabilization
moment, the grid has 300 nodes.

In other words, at times there was a reverse
flow like in Fig. 6. This will be analyzed in the
next section.

ON THE PHENOMENON
OF THE FLOW REVERSE

To analyze the flow reverse phenomenon at
the acceleration phase, we will first examine
such phases of two simplest flows of the UCM
fluid.

Couette flow
As shown in Mackarov8, the basic system

of equations for the UCM fluid flow between
two plates (the upper one accelerating on the
low similar to (8), and the lower one in rest) is
reduced to a single equation for a longitudinal
velocityu = u(t,y)

∂ 2u
∂ t2 +

1
Wi

∂ u
∂ t

=
1

WiRe
∂ 2u
∂ y2 (11)

with conditions

u(0,y) = u(t,0) = 0 (12)

u(t,1) =
α t

1+α t
(13)

which in some cases, in particular, with large
Wi or small productsWi · Re is close to the
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Figure 6. A flow of the UCM fluid whose
direction has changed shortly after the phase
depicted in Fig. 2.Re=0.05,Wi=4, t∼=3, the

grid has 588 nodes.

wave equation with the phase wave velocity
c = 1/

√
WiRe.

It quite easy to construct the solution of the
wave equation with conditions (12)-(13):

uw =V

(

t −
1− y

c

)

−V

(

t −
1+ y

c

)

(14)

V (p) =

{

0 : p ≤ 0
Vn(pn) : p > 0 (15)

heren is the integer part of fractionp/T , T =
2/c - time of the wave double passage over the
gap between the plates,

p0 = p−nT (16)

V0 =
α p0

1+α p0
(17)

pk = pk−1+T (18)

Vk =Vk−1+
α pk

1+α pk
, k = 1, ..n (19)

The solutions of the wave equation are
given in Fig. 7 (the dashed curves) in compar-
ison with the direct numerical solutions of sys-
tem (11)-(13). One can see that the wave pro-
file has discontinuities. Thesimilarity of two
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Figure 7. Profiles of the Couette flow in
comparison with solution of the wave equation
(14). Re=1, Wi=40. The small circles indicate

the points of the wave profiles extremal
curvature which move down (the left profile)

or up (the right one.

kinds of the solutions is especially evident for
the very early instant.

On the ground of a sufficiently large
amount of calculations performed, it is possi-
ble to come to the conclusion that even for not-
too-largeWi and not-too-smallWi ·Re (of order
of 1) the solution of system (11)-(13) is fre-
quently similar to the wave solution (14)-(19).
At later stages the flow tends to take the es-
tablished form with a linear profile (the second
and third profiles in Fig. 7) retaining, however,
certain features of the wave solution. In par-
ticular, the points of discontinuity of the wave
solution derivative correspond to the regions of
the large curvature of the flow profile thatmove
up and down between the plates continually re-
flecting from them.

Flat Poiseuille flow

The acceleration phase of the flat one-
dimensional symmetric flow moving over thex
direction within a slot with boundsy =±1 due
to the rising pressure gradient can be simulated



by the solution of equation
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Eq. (20), under the same suppositions about
Re, Wi as with the above considered Couette
flow, can be likewise "rendered" to equation:
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with the solution given by Eqs. (15)-(18), and

Vk =Vk−1+(−1)n−k α pk − ln(1+α pk)

α
,

k = 1, ...n (25)

As in the previous Couette case, the con-
structed solution proved quite close to the di-
rectly gotten numerical solution of problem
(20)-(23) as Fig. 8 shows.

As can be seen from expression (24), this
solution has the form of the flow shear distribu-
tion moving to and fro across the slot between
its wall and the flow axis as a wave.

Condition (22) shows that the reflection
from the axis curses the share to change the
sign which may change the sign of the shear
stress and the flow direction! This possibil-
ity is confirmed by the precise numerical so-
lution of this Poiseuille problem and is seen in

Fig. 8 where att=6 both numerical and "wave-
like" profiles correspond to the reverse of the
Poiseuille flow.

Thus, in the case of pure Poiseuille flow we
have the flow behavior similar to the case of
the cross-slots flow having the regions (not too
close to the stagnation point) where Poiseuille-
like parabolic profiles arise at certain stages.
Evidently, the change of the direction of a
cross-slots flow has the reason similar to the
one in the Poiseuille case: wave-like propaga-
tion of the shear disturbances initiated by the
fluid’s no-slip at walls and rising pressure gra-
dient due to the elastic nature of the fluid.
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Figure 8. Profiles of the Poiseuille flow (solid
lines) in comparison with solution (24)

(dashed lines).Re=0.1,Wi=40.

CONCLUSIONS

So, the study of the acceleration phase of
a viscoelastic fluid meeting the Oldroyd-B and
De Witt models within cross-slots has elicited
a number of the flow features observed pre-
viously in experimental and numerical stud-
ies as well as some newly found specific dy-
namic features like a periodic change of the
flow direction before the reach of the station-
ary regime.

It was demonstrated that in the case of a
two-component fluid even very low viscosity
of the Newtonian solvent can extinct such elas-
tic phenomena as large-scale vortexes, and the



flow reversing.
On the contrary, in the absence of a sol-

vent, when the Oldroyd-B model coincides
with UCM, very similar behaviors of this fluid
and the De Witt model were observed.

Analysis of stabilization phases of simpler
one-dimensional flows and comparison of the
results to the case of the cross-slots has shown
that the presented oscillatory behavior of the
stabilizing flow is underlain by a specific com-
bination of the fluid elastic properties and the
role of non-stationary flow conditions.

As to the coincidence between the UCM
and the De Witt fluids, which was not the
case in some other investigations (Mackarov9),
probably, the specific of the flow considered
here is such that the shear stress is not so large
as in the flow considered in this cited work
where the De Witt model predicted some spe-
cific details of the flow in the regions of high
share stresses, such as purely elastic instabili-
ties. This is a matter of future studies.
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