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ABSTRACT 
Viscous heating in capillary rheometry 

of polymer melts is studied by means of 
numerical simulation. The equations of 
continuity, momentum and energy are 
solved along with appropriate viscosity 
model and boundary conditions using the 
finite element method. Calculated results for 
a polycarbonate melt demonstrate a 
substantial contribution from viscous 
heating. A significant role played by the 
pressure dependence of viscosity is also 
illustrated. 

 
INTRODUCTION 

It is well known that when a highly 
viscous liquid like polymer melt is deformed 
in a flow field, some of the work of 
deformation is converted into heat by 
internal friction1,2. Most polymers have a 
high viscosity and a low thermal 
conductivity, which in combination with 
large process shear rates can lead to a 
significant increase in temperature. 

The effects of viscous heating upon 
viscosity measurements, particularly in 
capillary rheometers at high shear rates, is 
also an important issue3,4,5. In the capillary 
rheometer experiments, the temperature of 
the fluid being measured is generally 
assumed to remain at the set temperature 
throughout the capillary. For polymer melts, 
however, viscous heating effects are often 
large enough to cause markedly non-
isothermal conditions to occur. As a result, 

owing to the temperature-dependent 
viscosity of polymer melts, the use of the 
standard equations aimed at determining the 
viscosity from the isothermal capillary flow 
can lead to appreciably erroneous viscosity 
results.  

Recently Bur et al.6 used a non-contact 
temperature monitoring technique based on 
fluorescence spectroscopy to measure the 
temperature of a polymer during capillary 
rheometry testing. The tests were conducted 
for polycarbonate and polyethylene melts 
and a substantial temperature rise was 
recorded for both materials. 

Less well recognized is the fact that the 
experimental conditions which cause 
problems with viscous heating often involve 
pressures sufficiently high for the pressure 
dependence of viscosity to play a role, too. 
Sedláček et al.7, among others, has 
experimentally investigated the pressure 
dependence of viscosity of polymer melts 
and showed its importance particularly for 
amorphous polymers.  

This paper investigates the combined 
effects of viscous heating and pressure 
dependence of viscosity in the capillary flow 
of polymer melts by means of numerical 
simulation. The equations of continuity, 
momentum and energy are solved along 
with the viscosity model that accounts for 
the dependence on shear rate, temperature 
and pressure.  

 
 

 
Evaluation of the Effect of Viscous Heating in  

Capillary Rheometry of Polymer Melts 
 

Seppo Syrjälä and Johanna Aho 
 

Tampere University of Technology, Laboratory of Plastics and Elastomer Technology,  
P.O. Box 589, FI-33101 Tampere, Finland 

 
 



 
PROBLEM FORMULATION 

Consider the axially symmetric creeping 
flow of a generalized Newtonian fluid 
through a capillary. The description of the 
flow is based on the equations of continuity, 
momentum and energy, which in the 
cylindrical coordinate system can be written 
as follows: 
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In the above equations, z and r, respectively, 
denote the axial and radial coordinates, w 
and u, respectively, are the axial and radial 
velocity components, p stands for the 
pressure, T is the temperature and η, ρ, Cp 
and k, respectively, designate the viscosity, 
density, specific heat and thermal 

conductivity of the polymer. The term 
2

γη &  

in the energy equation represents viscous 
heating. Under the present flow field, the 
shear rate, γ& , takes the form 
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The material property values used in the 

simulations are those corresponding to 
polycarbonate (PC) Calibre 200-10 (Dow) 
used in the experiments of Bur et al6. The 
viscosity function is described as 
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The shift factor, α, is taken to contain the 
contribution from temperature and pressure, 
that is 

 
pTααα  =                                                    (7) 

 
The temperature shift factor is determined 
from the WLF equation of the form 
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The pressure shift factor is calculated from 
the exponential relation given by 
 

)exp(  pp βα =                                             (9) 
 

The adjusting parameters in the above 
equations were specified as follows: ηo = 
2858 Pa s, λ = 0.007 1/s s, n = 0.336, To = 
270°C, Ts = 165°C and β = 30⋅10-9 1/Pa. 
Most of these values were taken from the 
Campus data bank8 (corresponding to PC 
Calibre 200-10), but the last parameter β 
was estimated on the basis of the 
experiments of Sedláček et al.7. For the 
density, specific heat and thermal 
conductivity the following values were 



used: ρ = 1100 kg/m3, Cp = 2100 J/(kg°C) 
and k = 0.25 W/(m°C). The capillary used in 
the experiments of Bur et al.6 had the length 
of 30 mm and the diameter of 1 mm and 
these values were adopted for the present 
study. 

The velocity boundary conditions 
consist of imposing the no-slip condition at 
the capillary wall, the fully developed 
condition at the capillary inlet 
(corresponding to the inlet melt 
temperature) and the zero derivative 
condition at the capillary outlet. The thermal 
boundary conditions are the uniform melt 
temperature at the inlet (270°C) and the zero 
derivative condition at the outlet. At the 
capillary wall, both the isothermal (270°C) 
and adiabatic conditions are considered. It is 
obvious that the true thermal boundary 
condition at the capillary wall is 
intermediate between these two extremes. In 
the figure captions below, these boundary 
conditions are referred to as BC1, meaning 
the adiabatic capillary wall, and BC2, 
meaning the isothermal capillary wall. 
Numerical solutions to the above equations 
were obtained by the finite element method 
using the Comsol Multiphysics computer 
program9. 
 
RESULTS AND DISCUSSION 

Calculations were carried out for the 
apparent shear rates ranging from 50 1/s to 
2000 1/s. The predicted maximum and mean 
melt temperatures at the capillary outlet as a 
function of apparent shear rate are displayed 
in Fig. 1 indicating a significant temperature 
rise for both boundary conditions. 
Interestingly, the melt temperatures 
measured by Bur et al.6 most closely 
correspond to the predicted maximum 
temperatures with the adiabatic capillary 
wall condition. The predicted temperature 
developments along the capillary are 
illustrated in Fig. 2. As expected, for the 
adiabatic thermal boundary condition the 
maximum temperature occurs on the 

capillary wall, and for the isothermal 
condition somewhere inside the capillary. 
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Figure 1. Predicted maximum temperatures 
(Tmax) and mean temperatures (Tm) of the 

melt at the outlet of the capillary as a 
function of apparent shear rate: (1) Tmax for 
BC1, (2) Tm for BC1, (3) Tmax for BC2, (4) 

Tm for BC2 (• measured6). 
 

The predictions for the pressure drop 
across the capillary as a function of apparent 
shear rate are shown in Fig. 3 for both 
capillary wall boundary conditions. 
Additionally, the results of the simulation 
neglecting the temperature and pressure 
dependence of viscosity are given. In these 
simulations, the material property values 
were taken at the inlet melt temperature 
(270°C). Hence, these predictions should 
correspond to the usual assumptions behind 
the capillary rheometer measurements. It 
can be seen that for the adiabatic capillary 
wall condition the results are below and for 
the isothermal capillary wall condition 
above the ones obtained by ignoring the 
temperature and pressure dependence of 
viscosity. That is, the contribution of the 
viscous heating appears to be more 
significant in the case of the adiabatic wall 
boundary condition, whereas the 
contribution of the pressure dependence of 
viscosity is larger in the case of the 
isothermal wall boundary condition. In 
principle, these two contributing factors may 
compensate for each other in some 
circumstances.  
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Figure 2. Predicted development of 

temperature along the capillary for the 
apparent shear rate of 1000 1/s; (a) BC1, (b) 
BC2 (results are shown at axial distances of 

1, 5, 10, 20 and 30 mm)  
 
 
The predictions for the axial distribution of 
pressure with the apparent shear rate of 
1000 1/s are depicted in Fig. 4. The 
simulation with the temperature and 
pressure independent viscosity results in a 
linear pressure profile, which in accordance 
with the basic theory of capillary rheometry. 
The other two pressure profiles show 
significant deviations from the linear 
behaviour. This is expected since both the 
viscous heating and the pressure dependence 
of viscosity tend to contribute to the 
curvature of the pressure profile.   
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Figure 3. Predicted pressure drop across the 

capillary as a function of apparent shear 
rate; (1) temperature and pressure 

independent viscosity, (2) BC1, (3) BC2. 
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Figure 4. Predicted axial distributions of 

pressure for the apparent shear rate of 1000 
1/s; (1) temperature and pressure 

independent viscosity, (2) BC1, (3) BC2. 
 
CONCLUSIONS 

Significant effects of the viscous heating 
and pressure dependence of viscosity in the 
capillary rheometry of polymer melts were 
demonstrated by employing numerical 
simulation. It is, however, worth pointing 
out that the viscosity of polycarbonate is 
highly sensitive to temperature and pressure 
compared to most other polymers. 
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