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ABSTRACT 
The Hormuz- and the Namakdan salt 

diapirs extrude as parabolic profiles in the 
last 104 years. Velocity profiles of salts 
extruding through these diapirs are derived 
assuming Newtonian viscous flow of salts. 
Viscosity of salt in these diapirs are 
calculated to be 1018-1021 Pa s and 1017-1021 
Pa s, respectively. 

 
INTRODUCTION 

Rocks under high stress over a short time 
span, at shallow crustal depth, may undergo 
brittle deformation. If the stress persists for 
a longer time span of geological 
significance, such as thousands of years due 
to tectonic reasons, rocks undergo ductile 
deformation. Estimation of the rheological 
parameters of the rocks is of fundamental 
importance in material science and in civil 
engineering. Most of the studies in rock 
rheology are confined to the brittle regime 
since brittle deformation of rocks is easy to 
perform over short time-span, and is also 
suitable in laboratories. On the other hand, 
parameters of ductility of rocks, most 
significantly the viscosity, are not possible 
to measure in the laboratory. Geoscientists 
have occasionally estimated viscosity of 
rocks by comparing the model deformation 
pattern with that in the real rocks. The 
viscosity data so obtained are useful in 
further tectonic modelling at different 
scales.   

Most of the 200 or so diapirs of Hormuz 
salt in the Zagros mountains of Iran extrude 
mountains of salt that rise 400 m above their 
vents in strong limestones before they 
gravity spread as viscous fountains. 
Bruthans et al.1  demonstrated that seven of 
the eight local rise rates constrained for the 
Hormuz Island, and all the local rates on the 
Namakdan, fit well with the parabolic 
curves expected for the extrusion of a 
Newtonian viscous fluid from a cylindrical 
channel.  

Based on the data of uplift rate of 
Bruthans et al.1 and the velocity profiles we 
deduce in this work, we estimate of the 
dynamic viscosities of the salts of the 
Hormuz- and Namakdan salt diapirs from 
the Persian Gulf.  
 
METHODOLOGIES 

The pressure exerted on the Hormuz 
salt by the surrounding country rock (mainly 
limestones) is taken as the mechanism of 
extrusion of the Hormuz- and the Namakdan 
diapirs. The pressure exerted downwards by 
the extruded salt modifies the pressure 
gradient driving the extrusion, and is used to 
deduce the velocity profiles of the extrusive 
salt through elliptical- (Eqs 20 & -22) and 
circular (Eqs 23 & -24) planforms of the 
diapirs. These derivations assume that the 
extruded salt does not undergo gravitational 
spreading. We use the first set of equations 
to estimate the dynamic viscosity (µ) of the 

 
Estimation of viscosity of natural salts of the Hormuz- and the Namakdan salt 

diapirs in the Persian Gulf 
 

Soumyajit Mukherjee1, Christopher Talbot2, and Hemin A Koyi2 
 

1 Indian Institute of Technology Roorkee, Rooree-247667, Uttarakhand, INDIA. 
2 Hans Ramberg Tectonic Laboratory, Uppsala University, Uppsala 752 36, SWEDEN 

 
 



salt of the Hormuz diapir (Table 1), and the 
second set to deduce that for the Namakdan 
diapir (Table-2).  

In these calculations, the coordinates of 
the locations of known uplift rates (the (x,y) 
ordinates in Table 1) were calculated and 
used after taking the center of the Hormuz 
diapir (Fig. 2 of Bruthans et al.1), as the 
origin of the coordinate axes (and also the 
origin of the major- and the minor axes of 
the elliptical outcrop). The extrusion rates 
[Uz(y,z,t), Uz(y1,t),] used in the calculations 
are obtained from 7 data points for the 
Hormuz- and 6 data points for the 
Namakdan diapir (from Fig. 9a and –b of 
Bruthans et al.1).  
 
RESULTS  

The dynamic viscosity of the salt in the 
Hormuz diapir lies in the range of 1018-1021 
Pa s considering its extrusion through 
elliptical planform. The viscosity of the salt 
in the Namakdan diapir has been estimated 
by approximating its sub-circular planform 
as circular. The calculated range, 1017-1021 
Pa s, of its extruded salt is expected to 
represent approximately that extruded from 
the elliptical planform. This is because of 
the fact that the planform of the Namakdan 
diapir has very low ellipticity and very high 
sphericity (ellipticity: e=m.n-1=1.03; 
sphericity: 
Sp=2.(mn2)1/3.{m+9.(m2-n2)1/2.ln((m+(m2-
n2)1/2)/3)}-10.9996 ~1.0; calculated from m 
(major axis) =7km and n (minor axis) 
=6.8km as given in Bruthans et al.1). 
 
APPENDIX 

The ‘Poisson equation’ of rectilinear 
flow of a Newtonian viscous fluid in the z-
direction in an infinitely long parallel-wall 
inclined channel is given by:  
(∂2Uz/∂x2)+(∂2Uz/∂y2)=µ-1[(∂P/∂x)-d1.g.Sinθ]   
                                              (1)  

(Same as Eq 6.190 of Papanastasiou et al.2, 
but with symbols as per our choice) 

Here the x- and the y-directions are mutually 
perpendicular, both perpendicular to the z-
axis, and lie on the planform of the channel; 
‘µ’ is the dynamic viscosity of the fluid; 
(∂P/∂x) is the pressure gradient acting on the 
fluid along the x-direction; ‘d1’ is the 
density of the fluid, ‘g’ is the acceleration 
due to gravity, and ‘θ’ is the inclination of 
the channel.  

We now consider (i) the channel to be 
very long but of finite length; (ii) the 
channel to be vertical; (iii) the fluid rise 
within the channel due to pressure exerted 
by the surrounding overburden of higher 
density d2 (d2>d1) on the horizontal source 
layer; and (iv) the planform of the channel 
to be elliptical with ‘x’ and ‘y’ as the major- 
and the minor axes, and of lengths ‘2a’ and 
‘2b’, respectively (Fig. 2). Because of 
constraint (i),  

 

d1.g.Sinθ=d1.g.   

 
Applying this and the constraint (ii),  
 
(∂P/∂x)=[d2.g-Pout(t).H-1] 
 
where Pout(t) stands for the pressure exerted 
by the extruded fluid on the surface over 
which it has extruded. Therefore, the 
resultant pressure gradient acting vertically 
upwards on the fluid column 'A', at depth H 
is,  
 
[(∂P/∂x)-d.g.Sinθ]=[g.(d2-d1)-Pout(t).H-1]. 
 
Thus, Eq (1) becomes 
 
 (∂2Uz/∂x2)+(∂2Uz/∂y2)=µ-1.{g.(d2-d1)-Pout(t).H-1}  
                                                (2) 
 
Let Uz (x,y,t) be the velocity of the 
extruding fluid at coordinate (x,y) at instant 
t=t. Considering the channel walls to be 
static during fluid flow, the boundary 
condition is  



Uz(x,y,t)=0,         at (x2.a-2+y2.b-2)=1   (3) 
 
A dependent variable Uz

/ is now introduced 
such that  
 
Uz(x,y,t)= Uz

/ (x,y,t)+c1x2+c2y2           (4) 
 
c1,c2 are constants, ≠0, and are to be solved 
so that the following conditions are 
satisfied: (i) Uz

/ (x,y,t) satisfies the Laplace 
equation, and (ii) Uz

/ (x,y,t) is constant on 
the wall at a particular instant ‘t’. 
Substituting Eq (4) into Eq (2): 

 
(∂2Uz/∂x2)+(∂2Uz

//∂y2)+2(c1+c2)=µ-1.{(d2-
d1).g-Pout(t).H-1}                                        (5)    
 
Uz

/(x) will satisfy the Laplace Equation: 
 
 (∂2Uz

//∂x2)+(∂2 Uz
//∂y2)=0            (6) 

   
if  
 
2(c1+c2)=µ-1.{(d2-d1).g-Pout(t).H-1}           (7) 
 
From the boundary condition (Eq 3): 
 
Uz

/(x,y,t)=-(c1x2+c2y2)=-c1(x2+c2.c1
-1.y2)  (8)  

 
at (x2.a-2+y2.b-2)=1 
 
Fixing  
 
(c2.c1

-1)=(a2.b-2)                                 (9) 
 
Uz

/(x,y,t) is constant at the channel 
boundary at a particular instant ‘t’: 
 
Uz

/(x,y,t)=-c1a2 on  (x2.a-2+y2.b-2)=1       (10) 
 
According to the maximum principle for the 
Laplace equation, Uz

/(x,y,t) has both its 
minimum and maximum values on the 
boundary of the domain. This means that Uz

/ 

(x,y,t) is constant over the whole domain at 
a particular time:    
 
Uz

/(x,y,t)=-c1a2                          (11) 

Putting Eq (11) in eq (4), and using eq (9) 
 
Uz(x,y,t)=(-c1a2+c1x2+c2y2)=-c1a2(1-x2a-2-
c2c1

-1y2a-2)                                  (12)  
 
or,  
 
Uz(x,y,t)=-c1a2(1- x2a-2- y2b-2)                (13) 
 
The constant c1 is obtained from Eq (7) and 
Eq (9) 
 
c1=0.5.b2

.µ-1.{(d2-d1).g-Pout(t).H-1}.(a2+b2)-1   
                                                                 (14) 
 
Putting the c1 value of Eq (14) into Eq (13): 
 
Uz(x,y,t)=-0.5.µ-1.{(d2-d1).g-
Pout(t).H1}(a2b2).(a2+b2)-1.(1-x2.a-2-y2.b-2)         
                                                                 (15)  
 
Now, integration of the velocity profile 
given by Eq (15) over the elliptical planform 
gives the volumetric flow rate 
 

Q(t)=-0.25.л.a3b3
.µ-1{(d2-d1).g-Pout(t).H-

1}(a2+b2)-1                           (16) 
 
In Eq (16) and onwards, we assume that no 
gravitational spreading of the extruded salt 
takes place. In other words, no part of the 
extruded salt is considered to go outside the 
planform. Now, dividing Q(t) by the area of 
the elliptical cross-section (A=л.ab) gives 
the volumetric flow rate per unit area as 

 

Q/(t)=Q(t).A-1=-0.25.a2b2
.µ-1{(d2-d1).g-

Pout(t).H-1}(a2+b2)-1                  (17)                  
 
Equating Q/(t) with the pressure buildup in 
extrusion gives 
 
dPout(t)/dt = Q/(t).d1.g = -0.25.a2b2

. d1.g. µ-

1.{(d2-d1).g-Pout(t).H-1}.(a2+b2)-1             (18) 
 



The solution of Eq (18) with the boundary 
condition P(0)=0 is 
Pout(t)=g.(d2-d1).[1-exp(-t.τ-1)]                 (19) 
 
Where the ‘characteristic time’ (τ) has the 
following form 
 
τ=[4.µ.H.a-2b-2.d1

-1.g-1.(a2+b2)]                (20) 
 
Expanding the exponential series, neglecting 
terms higher than the second order, Eq (19) 
becomes 
 
Pout(t)=g.(d2-d1).[1-t.τ-1]                 (21) 
 
Substituting this value of Pout(t) of Eq (21) 
into Eq (15), and neglecting the negative 
sign at the right hand side   
 
Uz(x,y,t)=0.5.g.µ-1.(d2-d1).(a2b2).(a2+b2)-1.(1-
x2.a-2-y2.b-2).(1-t.τ-1)                           (22) 
 
the absolute value of velocity, Uz(x,y,t), is 
obtained. For circular planforms, putting 
a=b=y0, the radius of the circle; and  
 
y1=(x2+y2)0.5,  
 
the distance from the center; the velocity 
profile, given by Eq (22), simplifies to 
 
Uz(y1,t)=0.25.g.µ-1.(d2-d1).(y0

2-y1
2).(1-t.τ-1)   

 

The ‘characteristic time’, in this case, 
simplifies to 

τ=[8.µ.H.y0
-2.d1

-1.g-1]                       (24)  

  
Note that, until Eq (15), our derivation 
follows steps similar to Papanastasiou et al.2, 
and our derivation from Eq (16) till Eq (22) 
follows Weinberger et al.3 while maintaining 
the physical boundary conditions 
appropriate for our problem. 

The extrusion parameters and the 
channel geometry of the diapiric salt are 

equated with those of the fluid in channel 'A' 
as follows. 

• Uz(x,y,t): velocity of the extruded 
salt at the coordinate (x,y) at instant 
‘t’; for extrusion through an elliptical 
planform; symbol used in Eq (23) 
and in Table-1. 

• τ:  the ‘characteristic time’ of salt 
extrusion (cf. Weinberger et al.3), for 
both the elliptical and circular cross-
sections of the diapir as used in Eqs 
(20) and (24), respectively.  

• Uz(y1,t): velocity of the extruded salt 
at distance y1 from the diapir center 
and at instant ‘t’, for extrusion 
through circular section; symbol 
used in Eq (23) and in Table 2.   

• 2a, 2b:   length of the major- and the 
minor axes of the elliptical outcrop 
of the diapir; 8.5km and 6.8km 
respectively for the Hormuz salt 
diapir (Bruthans et al.1).  

• 2y0: channel diameter, considering 
the circular cross-section; symbol 
used in Eq (23). In different 
considerations, the diameters are 
considered as the major- and minor 
axes of the elliptical outcrops of the 
diapirs (for the Hormuz diapir: 
2y0=8.5km, 6.8km; and for the 
Namakdan diapir: 2y0=7km, 6.8km, 
from Bruthans et al.1).  

• µ: dynamic viscosity of the diapiric 
salts; symbol used in Eqs (20) to 
(24). 

• d1, d2: density of salt and that of the 
limestone, whose natural ranges are 
between 2.0-2.2 c.c. and 2.37-2.8 
c.c., respectively4. This gives dmax diff 
= (d2-d1)max = 0.8 c.c. (for d1=2 c.c., 
d2=2.8 c.c.) and dmin diff =(d2-d1)min = 
0.17 c.c (for d1=2.2 c.c., d2=2.37 
c.c.). dmax diff and dmin diff are used in 
(d2-d1) in Eqs (22) to (24) in 
calculating optimum values of µ of 
the diapiric salts. 



• H: height of the diapiric 
column/channel; 10km and 8km for 
the Hormuz- (Koop and Stonely5) 

and the Namakdan diapir (Bahroudi 
& Talbot6), respectively. 

• t: span of diapirism for the Hormuz- 
and the Namakdan diapirs. t=104 yrs 
(Bruthans et al.1). 

 

                       
Figure 1. Geographic locations of the Hormuz- and 

the Namakdan islands in the Persian Gulf. Dark areas 
represent exposed salt diapirs. Reproduced from 

Bruthans et al1. 
 

 
 
Figure 2. 'A' is a vertical cylinder with length ‘H’ and 

diameter ‘2Y0’. ‘A’ is connected at the base with a 
horizontal channel, and they are full of Newtonian 

viscous fluids with density d1. The horizontal channel 
is under compression by an overlying fluid column 

‘B’ with density d2. The hollow arrows indicate 
downward pressure exerted by the fluid in cylinder 

‘B’. Fluid in 'A' represents the Hormuz- and the 
Namakdan diapir salts in Tables-1, and -2 

respectively. The extrusion of the Hormuz- and the 

Namakdan salt diapir is shown by parabolic velocity 
profile. (Such extrusion geometry has been 

deciphered by Bruthans et al1) Not to scale. See text 
for discussions and derivations. 

 
 
                                                                                                                 



Table 1. Calculation of viscosity of salt of the Hormuz diapir considering (i) its elliptical  planform; (ii) the rate 
of upward flow Uz(x,y,t) & respective coordinate (x,y) (obtained from Fig. 2 and Fig. 9a respectively, of 
Bruthans et al.1); & (iii) dmax diff =0.8 and dmin diff =0.17. Out of 28 calculated values of viscosities, the optimum 
values (8.75×1020 Pa s ~ 1021 Pa s and 1018 Pa s respectively), are shown in bold.  
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Calculated from 
 Fig. 2 of Bruthans 
 et al (2006);  
considering  
diapir center as  
origin 

Calculated 
from Fig. 9a of 
Bruthans 
 et al (2006) 
 
 
 
 
 
 

Calculation of viscosity (µ) using eqn (22) 
 
 
 

Sam 
ple 

‘x’ 
ordinate  
(in km) 

‘y’ 
ordinate 
(in km) 

Uplift rate Uz 
(x,y,t) (in 
mm.y-1) in eqn 
(22)  
 

For dmax diff =0.8 c.c. For dmin diff  
=0.17 c.c.; at 
 d1=2.2 c.c. 
 

  
 

  µmax (in Pa s) 
 

µmin (in Pa s) 
 

1.29×1020 
 

2.67×1019  H3 
 

+0.39 +1.17 
 

5.00 
 

1×1018 
 

1.1×1018 
 

2.56×1020 
 

5.4×1019 
 

H4 
 

-0.44 
 

+1.5 
 

4.27 
 

1×1018 
 

1.04×1018 
 

1.74×1020 
 

3.6×1019 
 

H7 
 

+0.50 
 

+1.89 
 

2.50 
 

1×1018 
 

1.1×1018 
 

1.08×1020 
 

2.2×1019 
 

H8 
 

-1.5 
 

+0.61 
 

5.7 
 

1×1018 
 

1.1×1018 
 

8.75×1020 
 

1.85×1020 
 

H2 
 

-1.83 
 

0.83 
 

4.7 
 

1×1018 
 

1.03×1018 
 

1.52×1020 
 

3.2×1020 
 

H1 
 

-3.05 
 

-0.47 
 

2.2 
 

1×1018 
 

1.1×1018 
 

8.82×1018 
 

1.8×1018 
 

H5 
 

-2.83 
 

-0.11 
 

4.7 
 

1×1018 
 

1.1×1018 
 



Table 2. Calculation of viscosity (µ) of salt of the Namakdan diapir considering (i) its planform as circular and 
taking the major- (7km) and minor axes (6.8km) as the diameters, in both sets of calculations; (ii) the y1 value as 
obtained from Fig. (9b) of Bruthans et al.1 is written in a column; and (iii) the density parameters, dmax diff and dmin 

diff , as per caption of Table-1. Eqn (23) is used to calculate µ. The optimum of 44 calculated viscosities (6.5×1020 

Pa s ~1021 Pa s and 1.15×1017 Pa s ~1017 Pa s respectively), are shown in bold in the table. 
 

From Fig. 9b of 
Bruthans et al.1 

Salt viscosity (µ) calculated using eqn (23) 

For 2y0=7km For 2y0=6.8km 

For dmax diff  For dmin diff  For dmax diff  For dmin diff c.c.  

Samp
le 

Dist. 
from 
salt 
diapir 
center 
(m)= 
'y1' in 
eqn 
(23) 

Uplift 
rate 
(mm.
y-1); 
' Uz 
(y1,t)' 
in 
eqn 
(23) 

µmax (in Pa s) 
  

µmin (in Pa s) µmax (in Pa s) µmin (in Pa s) 

N1/2 2250 4.7 8.9×1019 

1.2×1018 
1.99×1020 

1.5×1018 
7.39×1019 

1.15×1017 
1.67×1020 

3.3×1019 
N2/1 2250 4.1 1.09×1020 

1.2×1018 
2.1×1019 

1.4×1018 
1.9×1020 

3.8×1019 
1.97×1019 

1.7×1018 
N7a 3310 2.55 3.1×1019 

1.2×1018 
6.5×1020 

2.95×1018 
1.38×1020 

1.2×1018 
No real solution 

N7b 3310 2.45 3.1×1019 

1.2×1018 
5.3×1018 

8.6×1017 
1.38×1020 

1.2×1018 
No real solution 

N6d 2800 3.75 6.03×1018 

1.5×1018 
1.66×1019 

1.4×1018 
5.89×1020 

1.15×1018 
1.16×1019 

1.18×1018 
N6x 2800  3.0 7.6×1018 

1.4×1018 
1.86×1019 

1.4×1018 
7.39×1019 

1.15×1018 
1.67×1019 

3.15×1017 
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