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INTRODUCTION

The behaviour of disperse two-phase sys-
tems subjected to flow is often studied by
measuring the deformation response of a
single drop suspended in a second fluid un-
dergoing shear or elongation. Taylor (1934)
was the first to carry out this type of ex-
periments in the 1930’s. His work was
of great significance to the understanding
of the mechanism behind drop deformation
and break-up as he recognized that break-up
is a direct consequence of the local flow field
surrounding the drop. More recent develop-
ments in imaging and controller technology
have resulted in fully automated experimen-
tal setups with higher reproducibility and
results for a larger range of experimental pa-
rameters, e.g. by Bentley and Leal (1986).
However, in practical engineering applica-
tions the flow field is usually a complex mix-
ture of shear and elongation making studies
on drop behaviour in mixed flows highly in-
teresting. We have carried out single drop
experiments in a rotor-stator device which
is capable of producing complex planar flow
fields. Furthermore we have implemented a
numerical model which can be used to sim-
ulate drop deformations and breakup under
a variety of flow conditions.

EXPERIMENTAL

Here the experimental procedure and
some example results are presented. In
Fig. 1 a photograph of the setup can be
seen. The apparatus consists of two concen-
tric cylinders with teethed walls. The chan-
nel formed between the cylinders is filled

with the continuous phase liquid. When the
cylinders are rotated in opposite directions
a complex planar flow field forms in the con-
tinuous liquid.

Figure 1: Experimental setup.

An experiment consist of monitoring the de-
formation and position of a single disperse
drop as it is influenced by the flow gen-
erated in the channel. In order to moni-
tor the drop a two-camera system is uti-
lized. One camera is used for monitoring
the drop deformation while the second cam-
era is used to determine the drop position in
the channel. Subsequent image analysis al-
lows us to quantify the data obtained from
the cameras by calculating the time depen-
dent deformation parameter D and drop co-
ordinates. The parameter D is defined as
D = (L − W )/(L + W ) where L and W is
the length and with of the drop. The local
flow field surrounding the drop is found from
numerical calculations. From the position
of the drop one can then estimate a local
shear and elongation rate which in turn can



be used to calculate a local capillary num-
ber defined as Ca = Gr0µc

σ
, where G is the

sum of the magnitude of the shear and elon-
gation rate, r0 is the initial drop radius, µc

is the viscosity of the continuous phase and
σ is the interfacial tension. In Fig. 2 an ex-
ample plot of D and Ca can be seen which
shows how the deformation follows the cap-
illary number.
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Figure 2: Experimental deformation D and nu-

merically calculated capillary number Ca as a func-

tion of time.

Depending on the viscosity ratio between
the drop and continuous phase a critical
capillary number exists where a drop will
break up. However, due to the complex
physics involved in this process detailed me-
chanical models are often applied in order
to simulate and study the break-up process
(see e.g. Li et al. (2000)).

MODELLING

As a tool for studying flow induced drop
deformation and break-up we have imple-
mented a model based on Finite Element
discretization of the flow field combined
with the Volume of Fluid (VOF) method
for tracking drop interfaces. In order to sim-
plify our calculations we only do simulations
for pure Stokes flow. Due to the nature of
the VOF method a stationary calculational
mesh can be used even though large topo-
logical changes of the interface are present.
The problem of interface tracking is solved
by defining a VOF function F which is iden-
tical with volume fraction of the drop phase
at a given point in our domain. In its dis-
crete form the VOF function is defined in
VOF cells such that for cells inside and out-
side the drop phase F = 1 and F = 0 re-

spectively. Cells that contain both phases,
i.e. interface cells, will have 0 < F < 1.
Using the VOF distribution it is possible to
calculate the interface normal which is used
for applying the interfacial tension using ei-
ther the method of Brackbill et al. (1992)
or Lafaurie et al. (1994) and for advect-
ing the VOF function in time. Fig. 3 shows
the results from a single drop simulation in
planar shear after break-up. In the simula-
tion Ca = 0.42 was used which is approxi-
mately the critical Ca-number for a system
with equal viscosities and Reynolds number
of zero.
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Figure 3: Simulation of drop break-up in planar

shear with Ca = 0.42

The figure shows how the drop is split up
into 2 main drops with 3 smaller drops in
between which is the typical break-up be-
haviour in shear when the Ca number is
close to the critical capillary number. By
varying the boundary conditions of our cal-
culational domain as linear combinations of
pure shear and pure elongation we can sim-
ulate a flow which resembles the local flow
in the rotor-stator device. Our present goal
is therefore to use the known local flow field
from experiments as an input to our model
in order to investigate whether or not we
are able to simulate the experimentally ob-
served drop behaviour.
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