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On fiber flocculation in turbulent pulp flow
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ABSTRACT

Fundamental ideas on the interaction
between fibers in turbulent flow are pre-
sented. In stationary homogeneous turbu-
lence, there is a high probability of floc for-
mation whereas in shear-flow turbulence or
in turbulent straining motion, flocs are less
likely to form and may even rupture. The
phenomenological results are used to for-
mulate a leading-order model for floccula-
tion in developing pipe flow.

INTRODUCTION

In the pulp and paper industry, the
high process rates produce turbulent flow
nearly everywhere in the system. The
stirring character of the turbulent flow
causes fiber entanglement, resulting in the
formation of local fiber aggregates (flocs)
which produce irregularities in strength
and opacity of the final product. There is
thus an urgent need for models which ac-
curately predict the rate of floc formation
in turbulent flow. The aim of the present
study is to provide a basic understand-
ing of the underlying phenomena. Re-
sults from classical turbulence theory are
used to assess the qualitative behavior of
fibers in elementary turbulent flow fields.
The conclusions are used to formulate a
leading-order model for flocculation in de-
veloping pipe flow.

TURBULENCE ENERGY-SPECTRUM
OF A FIBER SUSPENSION

Turbulence is characterized by eddying
motion with an energy-cascade in which

energy is transferred from large scales to
smaller and smaller scales until it reaches
the so-called Kolmogorov scale. At this
length-scale, the action of viscosity effec-
tively dissipates the remaining energy. The
energy-cascade is schematically visualized
in Fig. 1 below.
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Figure 1. Turbulence energy spectra for
three different values of the Reynolds
number (solid curves). The modified
energy-spectrum of a turbulent fiber

suspension is shown as the dashed curve.

The normalized energy is plotted
against xl, where x is the wave-number
and [ is the size of the energy-containing
eddies (defined by I = u3/e, where € is
the dissipation of turbulent kinetic en-
ergy and wu is the velocity-scale of the
energy-containing eddies). Energy-spectra
are shown for three different values of the
Reynolds number. As the Reynolds num-
ber increases the Kolmogorov scale de-
creases. This is shown in Fig. 1 as an
increase in the wave-number at which the



curves start to descend more rapidly. An
important characteristic of turbulent fiber
suspensions is that the presence of fibers
enhances the decay-rates of turbulent ed-
dies with length-scales smaller than the
fiber length. Also shown in Fig. 1 is a
modified spectrum (dashed curve) with a
larger cut-off length (the point at which
the curve starts to descend more rapidly)
due to the presence of fibers. Unlike
the Kolmogorov cut-off length, the fiber-
induced cut-off length is independent of
the Reynolds number. If the Reynolds
number were small, such that the Kol-
mogorov length is larger than the fiber cut-
off length, turbulent dissipation would be
unaffected by the presence of fibers. In
most cases pertaining to pulp-processing
the Reynolds number will be large enough
for the dissipation to be entirely controlled
by the fiber cut-off length. Duffy and
Lee! measured the friction factor for var-
ious pulp consistencies in pipe flow and
observed it to be constant for a range of
Reynolds numbers just above the point of
maximum drag reduction. At yet higher
Reynolds numbers, the friction factor ap-
peared to approach values corresponding
to pure water.

THE INTERACTION BETWEEN FI-
BERS IN TURBULENT FLOW

In order to understand the effect of
turbulence on suspended fibers, it is in-
structive to consider a “tagged” fluid par-
ticle as it moves around in the flow field.
Consider first the motion of a fluid parti-
cle in stationary (statistically steady), ho-
mogeneous turbulence. We note in pass-
ing that such a flow can not be sustained
since mean shear is needed for turbulent
production. Hence, the turbulence would
be in a state of decay and this violates
the assumption of stationarity. In many
bounded turbulent flows there are regions
in the interior of the flow field where

the turbulence is approximately stationary
and homogeneous, and to which energy is
supplied from regions of turbulent produc-
tion in close proximity to the outer bound-
aries. The following discussion is restricted
to such regions of the flow field. If the po-
sition of a particle at ¢t = 0 is xq, it is
possible to show? that the mean distance
between the particle at time ¢ and its orig-
inal position is proportional to v/%,

<x(t) x> [~ VE (1)

where < ... > denotes a spatial average.
On the other hand, the length of the path
traced out by the particle must be propor-
tional to t. The particle may be thought
of as performing a random walk as shown
in Fig. 2.
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Figure 2. The motion of a wandering
point in stationary, homogeneous
turbulence

Next, consider a single fiber, perform-
ing a random walk in a homogeneous tur-
bulent flow field. Since the distance be-
tween the end-points of the fiber is re-
stricted by its length, the fiber will twist
and fold around its principal axes. In a
fiber suspension, each fiber traces out a
path with length proportional to ¢ whereas
the distance between the centers of mass
of two individual fibers only grows as v/t.
Hence, there is a large probability that two
fibers which are initially close together will



interact and become entangled before the
distance between their centers of mass has
grown large enough for their end-points
to have moved out of reach of one an-
other. Similarly, an isolated fiber bundle
consisting of interlocked fibers would be-
come more and more entangled and its net-
work strength would increase at the cost
of the kinetic energy of the turbulent flow
field. A fiber bundle in an otherwise homo-
geneous fiber suspension would in addition
grow as more and more fibers become in-
terlocked with the bundle.

A simple experiment illustrating these
observations is described by Fellers and
Norman®. Dry, non-flocculated fibers are
carefully added to a beaker initially filled
with pure water until the concentration of
fibers well exceeds the sediment concentra-
tion. When a spoon is placed vertically
at the center of the beaker it immediately
falls to the rim. Next, turbulent energy
is added to the suspension by a mechan-
ical stirrer. After that, when the spoon
is placed at the center of the beaker, it
stands upright supported by the fiber net-
work. Thus, the turbulent kinetic energy
has been transformed into fiber network
strength (and heat).

In summary, we may conclude that sta-
tionary, homogeneous turbulence enhances
flocculation.

A different scenario is expected to oc-
cur when the turbulence is anisotropic. In
a uniform shear flow with mean velocities
(U, V, W) = (Sy, 0, 0) in the z, y and z
directions respectively, fluid particles sepa-
rate faster in the stream-wise direction and
it is possible to show* that,

[ <a(t)—a(t)>] ~ 7
[ <y(t) —y(O0)>] ~ Vi, (2)
| < 2(t) —2(0) > | ~ V4,

=)

where the separation in the stream-wise di-
rection is measured relative to the mean

displacement of fluid particles, Z(t), due
to the mean flow. Hence, the inter-particle
separation distance in the stream-wise di-
rection grows faster (~ t%2) than the
length of the path traced out by indi-
vidual fibers (~ t). As a result of this,
there is a possibility for fiber bundles (or
flocs) to be pulled apart in turbulent shear
flows. Similarly, in a 2D straining motion,
(U, V, W) = (Sz, =Sy, 0), which can be
obtained by passage of the flow through a
smooth contraction, the stream-wise par-
ticle separation is expected to grow as e
which is even faster than in uniform shear
flow. In this case however, the stream-
wise stretching is accompanied by a cross-
stream compression as well as an increase
in stream-wise vorticity (local spin about
the z-axis). These effects may induce a
growth in network strength and enhance
the rate of entanglement. The net effect of
a mean strain is however positive for floc
rupturing as shown in the experiments by
Kerekes®.

From the previous paragraph, we may
conclude that mean shear and mean strain
enhance de-flocculation in turbulent flow.

FLOCCULATION
PIPE FLOW

The ideas presented in the previous sec-
tion naturally lead to the notion of a yield
stress, 7,. At high concentrations, all fibers
are locked into a global network which
must be disrupted in order to produce a
flow. Hence, concentrated fiber suspen-
sions are expected to behave as yield-stress
fluids. In the intermediate range, where
the concentration is too low to produce a
global network, any kind of stirring motion
will potentially lead to entanglement and
the production of local aggregates (flocs)
provided the local shear stress is smaller
than 7,. As initially de-flocculated pulp
passes through a pipe, a certain level of
flocculation occurs due to the stirring mo-

IN DEVELOPING
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Figure 3. Schematic of developing pipe flow

tion produced by the turbulent eddies in
the boundary layer and eventually in the
fully developed turbulent pipe-flow profile.
While the complex details of the floccu-
lation process are poorly understood, the
qualitative behavior can be analyzed with
simple scaling laws which are presented
herein to obtain leading-order estimates
for the level of re-flocculation in developing
pipe flow.

When a uniform flow enters a straight
circular pipe, the flow evolves into a ve-
locity distribution which is independent of
the distance from the inlet. The final ve-
locity distribution is called the fully devel-
oped profile and the distance between the
inlet and the point at which the fully de-
veloped profile is established is called the
inlet length. At high Reynolds numbers
(Re = ua/v, where @ is the mean veloc-
ity, a the radius of the pipe and v the
kinematic viscosity) the initially laminar
boundary layer at the pipe wall destabi-
lizes and becomes turbulent a short dis-
tance from the entrance. The boundary
layer grows radially inward until it fills the
whole cross-section, at which point the fi-

nal velocity profile is established (see Fig.
3). In fully developed pipe flow, the shear
stress varies linearly from the value, 7, at
the wall to zero at the center of the pipe,

w=(1-2)n

a

where y is measured from the pipe wall (see
Fig. 4).

Figure 4. The fully developed velocity
profile shown together with reference to
the coordinate axes

It will be assumed that this relation
holds also in the evolving boundary layer
upstream of the fully developed profile,

Tz, y) = (1 - %)m(m), (4)

where §(x) is the local boundary-layer
thickness and 7, () is the local shear stress



at the wall. Given the yield stress, 7,, and
assuming that the relation given in Eq. 4
is applicable, a few interesting phenomena
may readily be deduced.

At a distance, x, downstream of the in-
let there is a turbulent boundary layer of
width §(x) next to the wall and a uniform
laminar core which as of yet is uninflu-
enced by the turbulent motion close to the
wall. Flocculation will occur in the turbu-
lent part of the flow field where 7 < 7,

mw(y%) <7, with y/6(z) <1
= @(1—#@) <%<%‘ZC). (5)

Substituting r = a — y for the radial co-
ordinate, it is found that fiber flocs are
formed within a ring-shaped region of the
pipe cross-section,

ﬂ@%:f<1—&@(ﬁ—nzw)-@)

1—
a a a

The outer boundary of the flocculated re-
gion is given by the radial location inside
the turbulent boundary layer at which the
shear stress first falls below the yield stress,
and the inner boundary of the ring-shaped
region is given by the radius of the uni-
form laminar core. As the laminar core di-
minishes downstream, the flocculated re-
gion becomes circular in the fully devel-
oped flow. If 7, () > 7,, where [ is the inlet
length, there will be a layer free from flocs
next to the wall in the fully developed flow
(see Fig. 5). Contrary, if 7,(l) < 7,, the
entire flow field will become flocculated.
The ratio of the flocculated area to the
cross-section of the pipe as a function of
x is given by,

=502 (-2 -
()0 G) o

If 7, > 7,(1), Eq. 7 only applies for z < .
where z. : 7,(z.) = 7,. Downstream of
z. the ratio of the flocculated area to the
cross-section of the pipe is given by,

Alz) = 2@ - (%m)f 8)

Eq. 7 and Eq. 8 require knowledge about
Ty, Tw(z) and 0(z). Measurements of the
yield stress in various fiber suspensions
have been obtained by Kerekes et al® and
Bennington et al”. 7, (z) and §(x) can be
estimated from scaling laws and empirical
correlations. Assuming that the Reynolds
number is large, the extent of the lami-
nar part of the boundary layer close to the
entrance (see Fig. 3) becomes negligible
compared to the full inlet length. Let the
velocity distribution in the boundary layer
be described by,

with wu.(z) =

where u,(x) is the friction velocity, n is a
number > 7 and C(n) is a constant de-
pending on the choice of n. At the edge of
the boundary layer, y = d(x), the velocity
must be equal to that of the uniform core,
Ula),

1/n
00) _ gy ()"
Combining Eq. 9 and Eq. 10,

v ()

The core velocity, U(z), may be related to
the mean velocity, u, by imposing continu-

ity,

E—l n+1
U~ 2n+1)(n+

o
a
4]
2n+1a( _5)‘
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Figure 5. A ring-shaped region of flocculated flow, externally bounded by the radius for
which 7(z,y) = 7, and internally by the boundary layer thickness, evolves into a circular
flocculated region in the fully developed flow

Estimates for 7,(x) and §(z) can now be
obtained by inserting the above relations
into von Karman’s integral equation,

d do w
(20, 4 0y) g 4 g2 _ Tw,

13
dx dx P (13)

where the displacement thickness and the
momentum thickness are given by,

[62)6 g o
/06%(1 - %) (1 - %)dy. (15)

Then, to leading order,

2/(n+1)
52/ g§ (3) dr =

0 =

(52:

u
Y 2/(n+3)
o(x) ~ | — 1
@~ (2) 7 e o)
and,
Tw () ~ <L>z/(n+3) (17)
Lpu2 uxr
2
Using,
U\ 2/ (+3)
5(z) = Cs( — 1
w=c(2) w0y

with §(1) = a gives the following expression
for the inlet length,

_ N\ 2/(n+1)
b O(S—(n+3)/(n+1) (%) . (19)

a 14

Comparing this to the empirical correla-
tion,

{ aa\ Y/
~ = 8.8Re!/t = 8.8(—) . (20)
a 14

it is found that,

n=11 and C;=0.16. (21)

With n = 11, the wall shear stress and the
boundary-layer thickness are given by,

S (3) T ()"
(22)

Eq. 7 may now be expressed in the follow-
ing form,

AX) =2X(1 - X¥"T 4+ X172, (23)
for 0 < X <1 where,
X=z2/l and T =r1,/7,(). (24)



If T >1, Eq. 23 is valid up to X = X, =
T-7. For X > T, the ratio of the floccu-
lated area to the cross-section of the pipe
is given by Eq. 8§,

A(X) = 2X8/7 — X127 (25)

for T > 1, X > T~7. The ratio of floccu-
lated flux to total flux at the downstream
location X is given by,

Qs(X) /asl_ri) 0(5) Ca—nay

Tw

1
Q a y 1/n
/0 U 5) (a —y)dy

= A(X) + 0(1) ~ A(X), (26)

where the last approximation is justified
by the level of approximation in the pre-
ceding analysis. Fig. 6 displays the ratio
of flocculated flux to total flux for differ-
ent values of T' = 7,/7,(l). The curves for
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Figure 6. Ratio of flocculated flux to
total flux as given by Eq. 26 for different
values of T’

larger values of T" are hardly distinguish-
able from the curve T'= 2. An interesting
observation from Fig. 6 is that the curves
are non-monotonic for 7' < 3/4. In order
to use the graph, it is necessary to first

obtain the appropriate value of T. Ben-
nington et al” give empirical correlations
for the yield stress on the form,

7, = K,0%2 (27)

where K; and K, are constants specific
to the type of fibers in the suspension,
and C' is the concentration. A somewhat
more physically based correlation is given
by Martinez et al®,

Ty = 5.5 X 10_4(N - Ngel)z.gv (28)

where N = 7C,,L}/6w is the crowding
number, Ny = 16 is the crowding num-
ber at which flocs start to form, C,, is
the concentration in [kg/m?|, L; in [m] is
an interaction length based on the fiber
length, and w is the coarseness in [kg/m)].
Both correlations produce rather crude es-
timates of the yield stress, and should be
updated as more accurate data becomes
available. In a flocculated suspension,
the concentration within the flocs will be
higher than that in between flocs. This
must be taken into account when estimat-
ing the disruptive floc yield stress. An
upper bound on the average floc concen-
tration can be obtained by assuming that
all fibers are locked into disjoint closely
packed spherical flocs of equal size,

Cpny < Cp = 147C,,.  (29)

8
/3
This upper bound is consistent with the
experimental values 1.26—1.44 reported by
Ringnér®. Hence, the disruptive floc yield
stress can be estimated from,

7C ¢ L> 2.3
7, =55x 107 (# - Ngel)

CmLQ 2.3
~ 5.5 X 104<wa - 16) [Pa) .
(30)



The wall shear stress, 7,,((), in fully devel-
oped pipe flow is given by,

1
To(l) = 5pu*T", (31)

2
where the dimensionless wall stress, 7%, is
obtained from Prandtl’s universal friction
law,

1
7= 40 log;(Rev/7*) +0.81.  (32)

The empirical correlations in Eq. 20 and
32 apply to pure water and should be re-
placed by the proper expressions for a spe-
cific pulp as such data becomes available.
Thereby, the attenuating effect of fibers
on the small-scale turbulence may be cap-
tured to leading order. Given the Reynolds
number, fiber concentration, length and
coarseness, the value of T can be estimated
from Eq. 30, 31 and 32. The level of re-
flocculation as a function of the distance
from the inlet is then obtained from Fig.
6.

CONCLUSION

Results from classical turbulence the-
ory and experimental observations were
used to assess the qualitative behavior
of fibers in elementary turbulent flow
fields. It was found that the likelihood of
fiber entanglement (flocculation) increases
in homogeneous turbulence and decreases
in turbulence with mean shear or mean
strain. The latter two flow fields were also
found to have an enhanced probability of
inducing floc rupturing (de-flocculation).
The concept of a floc yield stress was intro-
duced and a leading-order model for floc-
culation in developing pipe flow was de-
rived using simple scaling laws and empir-
ical correlations. The aim of this study was
to present a few fundamental ideas which
may provide a basis for more sophisticated
models.
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