
ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 14, 2006 
 

 
Back extrusion of Vočadlo (Robertson-Stiff) fluids - semi-analytical solution 

 
Petr Filip, Jiri David, and Radek Pivokonsky 

 
Institute of Hydrodynamics, Acad.Sci.Czech Rep., 166 12  Prague 6, Czech Republic 

 
 
 

ABSTRACT 
Back extrusion method determining 

rheological characteristics of fluids is based 
on plunging of a circular rod into an 
axisymmetrically located circular cup 
containing the experimental sample. The 
aim is to present a procedure calculating the 
individual rheological parameters appearing 
in the Vočadlo model - yield stress, 
consistency parameter and flow behaviour 
index. 

 
INTRODUCTION 

At present standard rheometers provide 
sufficiently precise measurements 
characterising behaviour of non-Newtonian 
materials. In practice, this accuracy is not 
always necessary, and the methods 
providing relatively cheap, fast and 
sufficient measurements of the rheological 
characteristics are fully acceptable.  

Back extrusion problem (Steffe and 
Osorio1) - when sample compression causes 
material to flow through the annulus formed 
between the plunger (cylindrical rod) and 
the cylinder container (see Fig.1) - 
represents one of these methods and appears 
in various industrial branches, e.g. metal 
processing, petroleum industry, food 
processing. 

Determination of the model parameters 
using a back extrusion technique has been 
hitherto derived for two models - two-
parameter (2P) power-law one with a 
consistency index K and a flow behaviour 
index n 
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and three-parameter (3P) Herschel-Bulkley 
one  
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taking into account viscoplastic behaviour 
of the materials tested through a yield stress 
τ0. 

Osorio and Steffe2 derived an analytical 
expression for a determination of flow 
behaviour index n in the power-law model 
(1). This expression is based on knowledge 
of a force corrected for buoyancy (provided 
by a compression testing machine such as 
those manufactured by Instron Corp.), 
length of an immersed plunger and its 
velocity for two successive runs with 
different plunger velocities. Prior to a 
determination of consistency parameter K it 
is necessary to calculate a location λ of zero 
shear stress in an annulus. This is the only 
numerical step in the whole procedure that 
is possible to bypass using the tabulated 
values of λ for individual combinations of 
flow behaviour index n and annular aspect 
ratio κ, or directly compute a location λ 
solving a simple integral equation (see 
Osorio and Steffe2) analogous to that 
presented in Hanks and Larsen3 for the case 
of a stationary inner cylinder and pressure 
gradient exerted in the axial direction. 

 



Determination of the model parameters 
for fluids obeying the Herschel-Bulkley 
model is not so straightforward as in the 
preceding case. Osorio and Steffe4 derived a 
procedure how to determine all three 
parameters, they provide diagrams enabling 
approximation of the concrete values. At 
present, with the development of common 
computational possibilities, it is more 
advantageous to use the equations they 
derived and compute the values of the 
individual parameters numerically. 

Barnes and Walters5 launched an ample 
discussion concerning possible 
interpretation of the meaning (or existence) 
of the notion 'yield stress'. This discussion 
was summarised in the paper by Barnes6. 
Reflecting this discussion and also 
viewpoints presented by Corradini and 
Peleg7 it seems that the 3P Vočadlo model8 
(sometimes called Robertson-Stiff one9) 
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better corresponds to reality and 
applicability than the 3P Herschel-Bulkley 
model. The reasons are as follows: 
• functional arrangement gives better chance 

to derive analytical solution for a given 
problem; 

• position of a yield stress τ0 as a member in 
rel.4 does not represent so strict singularity 
as an additive member τ0 in rel.2; 

• flow curve shear stress τ vs. shear rate γ  
does not exhibit an infinite slope at 0γ =  
as in the case of the Herschel-Bulkley 
model but attains a finite value, see Fig.2. 

The aim of this contribution is to 
present a procedure how to determine - for 
materials obeying the Vočadlo model - three 
corresponding empirical parameters using a 
back extrusion technique. 

 

 
Figure 1.  Definition sketch of a back 

extrusion. 
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Figure 2.  Vočadlo and Herschel-Bulkley 
models. 

 
PROBLEM FORMULATION 

Filip and David10 presented analysis of 
axial flow of non-Newtonian fluids obeying 
the Vočadlo model in concentric annuli 
when flow is caused simultaneously by the 
inner cylinder moving along its axis and by 



the pressure gradient imposed in the axial 
direction. Both cases - either pressure 
gradient assists to the moving cylinder or 
opposes - were considered. All possible 
cases (six) with respect to the possible 
positions of the plug flow regions were 
uniquely diversified through the derived 
semi-analytical criteria using the entry 
(geometrical, kinematical and rheological) 
parameters. For each possible case there was 
derived the explicit semi-analytical 
expression for the volumetric flow rate. 

Out of these six cases the only one takes 
place in the description of a back extrusion 
problem. In the following there is supposed 
that the flow is steady, laminar, 
incompressible, isothermal and axial with 
negligible end effects of the cylinders. The 
last assumption was studied and justified in 
Osorio et al.11. 

The Vočadlo model rewritten in the 
form corresponding to the flow situation in a 
back extrusion (see Fig.1) is of the form 
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Introducing the following 
dimensionless transformations (for notation 
see Figs.1,3, rels.6,7, q denotes volumetric 
flow rate, V represents velocity of a plunger) 
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the problem of flow within an annulus can 
be reformulated in the form 
 

2

T λ ξ
ξ

= −    ,  (9) 

( ) 1 , 1ϕ κ ϕ ( ) 0= − =    , (10) 
1

0

ns s
s sd dT T

d d
d
d

ϕ ϕ ϕ
ξ ξ ξ

− −

− −
⎡ ⎤

= Λ +⎢ ⎥
⎢ ⎥⎣ ⎦

  

 for    0T T≥ , (11) 

0d
d
ϕ
ξ

=  for    0T T≤  (12) 

 
where λ2 is a dimensionless constant of 
integration, s=1/n. 
 

 
 

Figure 3.  Definition sketch of a back 
extrusion after dimensionless 

transformations. 
 

If λi, λo denote the dimensionless 
boundary values of the plug flow region (see 
Fig.3), then from Eq.9 it follows that 



2
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For simplification the following 
notation will be used in the further analysis 
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The solution of the above stated 

problem provides the following expressions 
for the inner, plug-flow region and outer 
velocity profiles 
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From the condition of continuity of the 
velocity profile 
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it follows that λi is a solution of the equation 
 

( ) ( )

( )
0

1

0 02 1

i

i

s s

T

s s
i

H d H d

T T

λ

κ λ

1 0

ξ ξ ξ

λ κ
+

Λ + Λ −

− + − − Λ − =

∫ ∫ ξ
     (20) 

 
If we compare a volumetric flow rate q 

through an annulus as given by rel.8 and 
visually in Fig.2, we get 
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From here it follows that 
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As the determination of dimensionless 
flow rate Q is basically similar to that 
derived in Malik and Shenoy12 for power-
law fluids, in the following we only 
introduce the final result 
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 (23) 
Comparing rels.22,23 we obtain 
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PROBLEM SOLUTION 
First, out of three empirical parameters 

appearing in the Vočadlo model, a yield 
stress τ0 will be determined. As this step is 
the same as that introduced by Osorio and 
Steffe4 for the determination of yield stress 
in the Herschel-Bulkley model, in the 
following we use a notation used in that 
paper. 

Let us denote FT a static force at the 
base of the plunger formed successively by 
a friction force along the plunger Ff, force 
responsible for fluid flow in the upward 
direction Fu, and buoyancy force Fb  
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 (26) 
 
where L represents the length of a plunger 
penetrated into liquid; ΔP is a difference 
between pressures at the entrance to annulus 
and at the plunger base; ρ stands for fluid 
density; g is a gravity acceleration. 

When the plunger is stopped (i.e. φ≡0) a 
static force FT attain a value  

eTF
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From here it follows that 
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force  is experimentally recorded after 
the plunger is stopped. 

eTF

From rels. 25,26 we obtain  
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From the experimental data we know a 
value for FT (force recorded just before the 
plunger is stopped) and hence rel.29 
provides a value for Tw. Consequently we 

determine λ2 from rel.9 written at the point 
ξ=κ: 
 

( )2 1 wTλ κ= +  (30) 
 
Eqs.13,14 provide the values for λi, λo as T0 
and λ2 are known. 

Finally, the two remaining empirical 
parameters K, n in the Vočadlo model can 
be calculated from Eqs. 20 and 24. 
 
DISCUSSION 

The application of the whole procedure 
presented above significantly subjects to the 
assumption of an axisymmetrical position of 
a plunger with respect to a cylinder 
container. Deviation from this assumption 
can cause non-negligible errors in the 
prediction of the parameters τ0, K, n.   

As the power-law model and the 
Bingham model are the sub-cases of the 
Vočadlo model for τ0=0 and n=1, 
respectively, it is also possible to apply the 
procedure presented above to these two 
models with the corresponding presetting of 
the individual parameters. 
 
CONCLUSION 

Determination of all three parameters in 
the Vočadlo model with use of a back 
extrusion technique represents a cheap and 
time-saving experimental method only 
requiring a compression testing machine and 
a common commercial software enabling 
the calculation of these parameters. The 
accuracy of these parameters does not attain 
the one when the sophisticated rheometers 
are used, nevertheless from the practical 
point of view is - in many applications - 
fully satisfactory. 
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