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In this lecture I want to discuss some 
experimental results that have intrigued me.  
Some of the experiments were carried out a 
decade or two ago, but others are more 
recent.  They concern complex flows of non-
Newtonian elastic liquids. 

I shall provide experimental evidence 
that, in some cases, whether or not the liquid 
is shear-thinning is of crucial importance.  I 
must emphasise at the outset that this 
unusual state of affairs exists only in isolated 
circumstances. 

To add to the intrigue, I also want to 
investigate the similarity, or otherwise, 
between planar and axisymmetric versions 
of the same flow.  Sometimes they show the 
expected similarities and sometimes not, 
and, interestingly, the existence or absence 
of shear thinning is of crucial importance 
when provocative differences are in 
evidence. 

I must admit that a number of my 
preconceived ideas have been shattered by 
the experimental results I will show you.  It 
has been a learning curve for me and I shall 
leave you with a number of intriguing 
questions, many of which are far from being 
resolved. 

But first I must be quite specific about 
my basic thesis.  I need to make it crystal 
clear what I mean when I talk about planar 
and axisymmetric versions of the same flow. 

As an example, consider contraction 
flows.  The contractions are abrupt in both 
cases and, in the axisymmetric case we have 

pressure-driven flow from one capillary into 
another of smaller diameter.  In the planar 
version, the third dimension is considered 
long enough for the flow to be deemed two-
dimensional.  We shall be basically 
concerned with the pressure differences that 
are required to produce given flow rates, 
together with the flow structure.  In 
particular, we are interested in the existence 
or otherwise of lip vortices and also whether 
so-called vortex enhancement is present. 

I show you a typical picture of the flow 
structure.  This happens to be for a 0.25% 
aqueous solution of polyacrylamide in a 4:1 
planar contraction.  Both a lip vortex and a 
salient corner vortex are in evidence. 

The next picture illustrates what we 
mean by vortex enhancement.  This time, we 
have an 8:1 axisymmetric contraction and 
the liquid is a constant-viscosity Boger fluid. 

Whether or not the lip vortex (when it is 
present) or the salient corner vortex grows in 
the development of vortex enhancement is a 
crucial question. 

So much for flow structure.  Now a word 
about the dynamics.  Vortex enhancement is 
invariably accompanied by a relatively high 
pressure gradient to produce a given flow 
rate, and this is usually studied through the 
so called ‘Couette correction’. 

Let me now introduce you to the 
fascinating phenomena associated with the 
‘splashing’ experiment. 

In the axisymmetric case, a sphere is 
dropped from some distance above the free 
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surface of a liquid and a rich sequence of 
events unfolds.  The initial crater, the crown 
structure and the vertical jet (with the 
possibility of distinct satellite drops) are all 
features that can occur in a single 
experiment.  The vertical jet can often reach 
extravagant heights.  We call it the 
Worthington jet, after the British scientist 
who first investigated the effect over one 
hundred years ago. 

In the planar version of the splashing 
experiment, a long horizontal rod is released 
onto the free surface of the liquid. 

Let make it quite clear what I mean by 
the presence or absence of ‘shear thinning’.  
I probably don’t need to labour this, but it 
does provide me with an opportunity to 
discuss steady simple shear flow. 

Here, σik is the stress tensor and γ a 
constant shear rate.  The stress components 
can be written in terms of three so-called 
viscometric functions; a shear stress, (or 
equivalently a viscosity) and two normal 
stress differences N1 and N2.  For the vast 
majority of elastic liquids, we have so-called 
‘shear thinning’, with the viscosity falling as 
the shear rate is increased.  I show you data 
for a typical polymer solution, one that we 
shall be studying in a moment. 

Now, in this presentation, I shall be 
considering the behaviour of some aqueous 
polymer solutions and also so-called Boger 
fluids. 

For this small but important sub-class of 
Boger fluids, the viscosity is essentially 
constant, although the fluids can still be 
‘highly elastic’.  These are invariably 
constructed by dissolving a small 
concentration of a high molecular weight 
polymer like polyacrylamide in a fairly 
viscous Newtonian solvent like maltose 
syrup. 

For completeness and future reference, I 
must remind you of another important 
rheometrical flow called ‘uniaxial 
extension’.  Here, the so-called extensional 
viscosity is a function of the strain rate ∈.  
We usually find it convenient to talk in 

terms of the Trouton Ratio, which happens 
to be 3 for a Newtonian liquid.  Elastic 
liquids can often have Trouton ratios far in 
excess of the Newtonian value. 

There is of course a planar equivalent of 
uniaxial extension called planar extension, 
and this leads to a planar extensional 
viscosity as indicated. 

But it is now time to get down to 
specifics. We see a schematic of the 
experimental apparatus for flow through 
contractions, and I begin by showing some 
important results which have been around 
for some time.  They are for the 1% aqueous 
solution of polyacrylamide I’ve already 
referred to, flowing in planar contractions.  
We’ve already seen that the rheometrical 
data show a typical shear-thinning response.  
(SO WE HAVE A SHEAR THINNING 
LIQUID FLOWING IN A PLANAR 
CONTRACTION) 

I shall show you clear evidence of vortex 
enhancement as the flow rate is increased in 
all circumstances, but the mechanism is 
something we shall need to take note of. 

To, first, pictures for a 4:1 planar 
contraction.  The flow rate is increasing as 
we move through the sequence.  There is no 
doubt that it is the SALIENT corner vortex 
which grows in the build up to Vortex 
Enhancement. 

Contrast this with what happens in the 
same liquid in an 8:1 contraction.  Here, the 
fourth picture is a blow up of the previous 
one to leave is in no doubt that both a lip 
vortex and a salient corner vortex are now in 
evidence.  The lip vortex encapsulates the 
salient corner vortex and becomes dominant.  
(There is again vortex enhancement, but the 
mechanism is intriguingly different.) 

For completeness, I show you that the 
same mechanism prevails in an 80:1 
contraction. 

So, for this shear thinning polymer 
solution, vortex enhancement is found in 
planar contractions.  We shall need to come 
back to the intriguing side issue of 



mechanisms, but let’s put that on hold for 
the moment. 

I could show you scores of examples 
where vortex enhancement is found in shear 
thinning liquids in AXISYMMETRIC 
contractions.  I show you just one for 
completeness.  The liquid is an aqueous 
solution of polyacrylamide, which we have 
denoted by C1. 

But I now want to pass on to constant-
viscosity Boger fluids.  I show you first a 
famous sequence for an axisymmetric 
contraction obtained by David Boger 
himself in the 1980s.  This has occupied the 
attention of rheologists, both experimental 
and computational, for nearly 30 years.  
Vortex enhancement is clear and dramatic. 

So we have vortex enhancement in both 
planar and axisymmetric contractions for 
shear thinning elastic liquids, and certainly 
for axisymmetric contractions, the same is 
true for constant viscosity Boger fluids.  
There is clearly one piece of the jigsaw 
puzzle that remains.  What happens when 
Boger fluids flow in PLANAR contractions? 

Well, no vortex enhancement and that’s 
for sure!  In fact, the salient corner vortex is 
almost swept away in this case, as if inertia 
were becoming important, which it is not! I 
show you two further examples of the effect. 

Now let’s move on to the ‘Dynamics’.   
Let’s compare the pressure drop / flow rate 
response for a Boger fluid and a Newtonian 
fluid of the same shear viscosity.  In the 
axisymmetric case, the difference is 
dramatic.  Much more pressure is required to 
produce a given flow rate in the case of the 
Boger fluid.  The Couette correction in this 
case is huge! 

But what do we see in the planar case?  
Well, virtually NO difference between the 
responses for the Newtonian and Boger 
fluids.  At the same time, no vortex activity 
is encountered right up to the onset of 
instabilities. 

So, let me summarize the situation for 
the four cases. 

Now, I’ve already placed before you 
enough intrigue to provide material for a 
cluster of PhD theses.  But before I attempt 
to bring you up to date on the likely causes 
for the different flow phenomena, let me 
move on to the flow I mentioned at the 
beginning, i.e. “splashing”. 

I shall now need to concentrate on 
constant-viscosity Boger fluids, but the 
recipe is such that the viscosities are quite 
low (of the order of half a Pas).  This 
restriction is important, since the ‘window of 
opportunity’ in the splashing experiment is 
quite limited.  If the viscosity is too low, 
satellite drops can dominate, and, if the 
viscosity is too high, the flow is innocuous 
and most uninteresting. 

So, the polymer concentrations are now 
quite low and the test liquids can be 
considered to be in the ‘slightly elastic 
liquids’ category, with very small 
characteristic relaxation times.  However, in 
the splashing experiments, polymer 
concentrations as low as  
10 wppm can result in dramatic changes in 
the flow characteristics and in our 
experiments we have never needed to go 
beyond 100 wppm. 

I have already shown you the various 
flow features that arise and, in passing, I 
show you a typical response when a sphere 
is released to create an axisymmetric 
Worthington jet. So, let’s concentrate on this 
Worthington jet and how its height can be 
dramatically affected by a very small 
amount of viscoelasticity.  The time scale of 
each experiment is very short and the 
phenomena are often invisible to the naked 
eye.  So, a high-speed camera is very 
desirable, although I shall concentrate on 
pictures taken at the maximum height of this 
jet.  Indeed, the actual height of the jet can 
be estimated very conveniently by simply 
using a horizontal piece of paper and a ruler. 

Sometimes we compare the response of 
slightly elastic liquids with that of the 
solvent and sometimes we modify the recipe 
a little to ensure that the Newtonian and 



Boger fluid viscosities are the same.  There 
is no great issue here, since the polymer 
concentrations we are interested in are so 
low as to have a trivial effect on the 
viscosity.  We are talking about a couple of 
% at the most. 

The first illustration is one that has been 
around for some time.  It concerns a 
Newtonian fluid and a Boger fluid of the 
same shear viscosity.  The polymer 
concentration of 50 wppm means that the 
characteristic time of the polymer solution is 
quite low. 

Now, the pictures you are looking at tell 
an obvious story.  A slight amount of 
viscoelasticity can have a huge influence on 
the height of the jet.  Let me quantify the 
scale of the effect for a given set of 
conditions, which are fairly typical.  We see 
that concentrations as low as 10 ppm can 
have a dramatic effect on the height of the 
jet, although any change in the shear 
viscosity is insignificant. 

In these experiments the type of polymer 
used is found to be important and the next 
pictures compare results for a flexible 
polyacrylamide and a semi rigid xanthan 
gum. 

We clearly need to consider the question 
of likely mechanisms, but let me first 
address the same issue that occupied our 
minds in connection with contraction flows. 

The very dilute polymer solutions we are 
investigating in the splashing experiment 
can be considered to be constant-viscosity 
Boger fluids, albeit with very low 
characteristic relaxation times.  So the 
question is:-  How will they behave in the 
two-dimensional planar equivalent of the 
splashing experiment?  This involves the 
release of long horizontal cylindrical rods 
onto the free surface of the liquid.  In 
passing, I must draw your attention to the 
quite attractive three-dimensional flow 
features we encountered when short rods 
were released. They are certainly pleasing 
on the eye, but they are not particularly 
relevant to my main theme. So let me now 

concentrate on the truly planar equivalent of 
the splashing experiment. This involves the 
careful release of LONG horizontal rods 
onto the free surface of a liquid.  

The figures show that, in this case, there 
is essentially no change in the maximum 
height of the jet over the range of conditions 
that we were able to study.  So, shades again 
of our experience in the contraction flow 
experiments for Boger fluids.  Clearly, the 
conclusion is independent of the polymer 
used. 

It isn’t appropriate here to introduce any 
substantial shear thinning and I need to press 
on. 

Let us now try to understand and 
interpret what we have seen so far. 

So I next turn to one of my loves, 
Computational Rheology, and I ask the 
question: Is it possible to predict and 
simulate the observed behaviour?  To do 
this, we first need to agree on appropriate 
constitutive equations for the test liquids. 

In the case of constant-viscosity Boger 
fluids, an immediate choice comes to mind 
that most would agree to be appropriate and 
reasonable, at least as a first guess; the so-
called Oldroyd B model. 

I show you the constitutive equations for 
this model fluid using a conventional 
notation and I also show you the associated 
predictions for some rheometrical flows.  
Briefly, we have a constant shear viscosity, a 
positive first normal stress difference N1, a 
zero second normal stress difference N2 and 
a potentially high extensional viscosity.  
You will see that this becomes infinite at a 
finite value of the strain rate, which should 
be high enough!  That is OK for starters. 

When we introduce shear thinning into 
the discussion, the choice seems unlimited!  
I am simply going to show you numerical 
simulations for a certain so called Phan-
Thien model, which is relatively simple and 
will certainly provide the sought-for shear-
thinning. 

At the University of Wales Institute of 
non-Newtonian Fluid Mechanics, we have 



studied contraction flows employing the two 
constitutive models I have described and 
using a variety of numerical methods.  I 
shall show you data from Aberystwyth 
obtained by my colleague Tim Phillips and 
from Swansea obtained by my colleague 
Mike Webster. 

I show you first some representative 
simulations obtained using a finite volume 
semi-Lagrangian technique for the Oldroyd 
B model.  Both planar and axisymmetric 
contractions are included.  In the 
axisymmetric case, there is clear evidence of 
vortex enhancement, while in the planar case 
this is absent.  The simulations are for a 
constant viscosity model and therefore 
qualitatively in agreement with the 
experimental results on Boger fluids. 

Let me now pass on to some simulations 
from my Swansea colleague Mike Webster 
that I have been associated with.  Again they 
are for the Oldroyd B model, only this time 
the corners have sometimes been rounded to 
enable us to reach higher Weissenberg 
numbers.  The simulations confirm the 
general trend and the vortex inhibition in the 
planar case is now quite clear.  So far, so 
good! 

But what about the influence of shear 
thinning?  Well, here are the corresponding 
simulations for the PTT model, which 
includes shear thinning.  Vortex 
enhancement is now predicted in both the 
planar and axisymmetric contractions.  So 
the simulations are in encouraging 
qualitative agreement with the experimental 
pictures I showed you earlier. 

But let me now ask whether we can also 
simulate the intriguing mechanisms for 
vortex enhancement when shear-thinning 
fluids flow in planar contractions.  (You will 
recall the series of pictures for the shear 
thinning 1% aqueous solution of 
polyacrylamide.)  Well, let me show you 
some very recent simulations obtained by a 
Computational Rheology group from 
Portugal.  They’ve again used a PTT model 
to handle shear thinning.  So here are their 

simulations obtained using a finite-volume 
method;  De is a Deborah number. 

For the 4:1 contraction we see that the 
mechanism is clearly associated with the 
growth of the salient corner vortex.  
However, for a 20:1 contraction, there is a 
clear evidence of a lip vortex, which 
becomes the dominant influence in 
generating vortex enhancement.  This is 
even clearer for a 100:1 contract. 

Now I find these simulations immensely 
exciting and encouraging.  Quite obviously, 
the field is making significant progress. 

But what of the Couette correction?  
What of the pressure gradients required to 
produce a given flow rate in all the cases we 
have discussed.  Well, I have to admit to you 
that, without exception, viscoelasticity is 
predicted to have a negligible effect on the 
Couette corrections, even when there are 
substantial changes in the flow structure.  
Now, we can live with this in the planar 
contraction flow of constant viscosity 
liquids, but not for the others.  This is very 
disappointing and worrying and I have to tell 
you that we are certainly not alone in this 
very negative conclusion.  So far as I am 
aware, everyone, without exception, has 
been unable to predict measurable increases 
in the Couette corrections, and this is 
certainly one of the unresolved problems in 
this field. 

So, much progress but some pessimism 
also.  But let’s pass on to ‘splashing’.  In 
many ways, this is a more challenging 
numerical problem, since it is clearly 
unstable and involves free surfaces. 

I have been indirectly associated with 
some numerical work generated in Sao 
Carlos in Brazil by Cuminato, Tome and 
others, ably assisted by Sean McKee of 
Strathclyde in Scotland.  Currently, the 
simulations are for the simpler falling 
SPHERICAL DROP problem rather than for 
a solid sphere, but, although I didn’t show it 
to you, we can expect a similar reduction in 
the height of the Worthington jet in this case 
also.  So, I simply show you the simulations 



for the flow development and then for the 
maximum height of the jet as the non-
dimensional number – this time We, the 
Weissenberg number increases. 

Point 1 – They can simulate the flow. 
Point 2 – There is a difference in the 

height of the jet and the trend is in the right 
direction.  So, watch this space! 

But I don’t want to leave the story in the 
air, as it were.  Why the difference between 
some planar and axisymmetric flows and 
why the difference sometimes for constant 
viscosity and shear thinning fluids.  In a 
hand-waving fashion, we have associated 
what happens with extensional viscosity 
phenomena and, in particular, with the high 
Trouton ratios we know to be present in 
mobile polymer solutions.  I show you that 
such a view goes back several decades in the 
case of contraction flows. 

  But my time is up.  All that remains is 
for me to leave you with a worrying 
question. 

If we are right in believing that we can 
lay all the extravagant effects at the door of 
extensional viscosity, why is it that no 
vortex enhancement is found when Boger 
fluids flow in planar contractions?   So far as 
I am aware, there is no evidence that Boger 
fluids only exhibit high Trouton ratios in 
uniaxial extension! 

So much progress, but several open 
questions remain.  I find all this immensely 
exciting and I hope that I have been able to 
convey some of my enthusiasm to you! 
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