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ABSTRACT

A viscosity function for highly-shear-
thinning or yield-stress liquids such as
pastes and slurries is proposed. This
function is continuous and presents a low
shear-rate viscosity plateau, followed by a
sharp viscosity drop at a treshold shear
stress value (yield stress), and a subse-
quent power-law region.

INTRODUCTION

Viscoplastic or yield-stress liquids are
materials that have an yield stress below
which they behave as a high viscosity liq-
uid, and above which they behave as a
shear-thinning liquid. At the yield stress,
an often dramatic drop of the viscosity
level is observed.

Most of the viscoplastic materials that
appear in processes of interest are vis-
coplastic liquids. A few examples of
viscoplastic liquids are: cement slur-
ries, drilling muds and heavy oils in the
petroleum industry; mayonnaise, butter,
creams, pastes and many dairy products
in the food and cosmetics industries; clay,
mud and other concentrated suspensions
in nature.

With the technological advancement
in rheometry, high (but finite) viscosity
plateaus at low shear rates have been ob-
served in most viscoplastic materials of in-
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terest. A comprehensive discussion on this
subject is found in [1].

VISCOSITY FUNCTIONS FOR VIS-
COPLASTIC LIQUIDS

Overview of the Available Viscosity Func-
tions

Perhaps the viscosity function that
is the most often employed to fit vis-
cosity data of viscoplastic materials is
the Herschel-Bulkley viscosity function [2].
The shear stress corresponding to this
function is given by{

τ = τo + Kγ̇n, if τ > τo;
γ̇ = 0, otherwise.

(1)

where τ is the shear stress, τo is the yield
stress, γ̇ is the shear rate, K is the con-
sistency index, and n is the behavior (or
power-law) index. When n = 1, it re-
duces to the traditional Bingham plastic
function,{

τ = τo + µpγ̇, if τ > τo;
γ̇ = 0, otherwise.

(2)

where µp is the plastic viscosity. Both
equations predict an infinite viscosity at
the limit of zero shear rate. This behav-
ior is not compatible with the conservation
equations that govern many complex flows
[3]. Moreover, the prediction of an infinite
vicosity yields rather poor curve fittings
to data pertaining to viscoplastic liquids.
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Figure 1: The qualitative behavior of the
Carreau and Cross functions.

One alternative when the low shear rate
range is not of interest is to discard the
data in the plateau region, but then the
dilemma of which data points to exclude
comes into play. The quality of the fitting
and, more importantly, the value obtained
for τo are typically strongly affected by this
subjective decision. It is rather frustrating
to observe such an arbitrariness in deter-
mining a parameter such as τo, which has
a clear physical meaning.

Possible choices when no shear-
thinning is observed beyond the yield
stress are the Cross model [4],

η = η∞ +
ηo − η∞

1 + (λγ̇)n−1
(3)

and the Carreau model [2],

η = η∞ +
ηo − η∞

[1 + (λγ̇)2]
1−n

2

(4)

where η ≡ τ/γ̇ is the viscosity func-
tion, and λ is a curve-fitting parameter
with dimension of time. The two vis-
cosity functions above are commonly used
for pseudoplastic liquids with a zero-shear-
rate plateau (ηo), a power-law region that
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Figure 2: The qualitative behavior of the
Papanastasiou viscosity function and the
modified version of the bi-viscosity func-
tion.

begins at γ̇ ' 1/λ, and an infinite-shear-
rate plateau (η∞). In the limit of a very
steep power-law region (n→ 0), these two
equations yield the behavior illustrated in
Fig. 1.

For shear-thinning viscoplastic liquids,
that is, viscoplastic liquids that shear-
thin at shear stresses larger than the yield
stress, a regularized Herschel-Bulkley func-
tion was proposed by Papanastasiou [5] for
usage in finite-element flow simulations,
namely,

τ = (1− exp(−aγ̇))τo + Kγ̇n (5)

where a is the regularizing parameter.
As a → 0, Papanastasiou’s function ap-
proaches the Herschel-Bulkley function,
with the important advantage of holding
uniformly in yielded and unyielded regions.
The shear stress as given by Eq. (5) results
in the viscosity function plotted in Figure
2 as a function of the shear stress. Un-
fortunately, the Papanastasiou function is
unable to predict a finite viscosity plateau
in the limit of zero shear rate for shear-



thinning viscoplastic liquids, as illustrated
in Fig. 2.

An interesting alternative that has a
more suitable qualitative behavior for vis-
coplastic liquids is the so-called modified
bi-viscosity function [6, 7], which equation
for shear stress is given by{

τ = τo + Kγ̇n, if γ̇ > γ̇o;
ηoγ̇, otherwise.

(6)

where γ̇o = τo/(ηo − Kγn−1
o ) ' τo/ηo is

the yield shear rate, usually very low. Fig-
ure 2 shows the plot of the correspond-
ing viscosity function as a function of the
shear stress. This viscosity function in-
volves two different expressions, each one
applicable to a different shear-rate range.
These ranges are delimited by the yield
shear rate, which is to be determined in
the curve-fitting procedure itself. These
characteristics, together with its discontin-
uous derivative (Fig. 2), cause severe prac-
tical problems that typically prevent good-
quality fittings of Eq. (6) to viscosity data
of viscoplastic liquids.

The Proposed Viscosity Function

We now propose and briefly discuss the
properties of the following function:

τ = (1− exp(−ηoγ̇/τo))(τo + Kγ̇n) (7)

This function is plotted in Fig. 3 for illus-
tration purposes. The physical meaning
of the parameters that appear in Eq. (7),
namely, ηo, τo, K, and n, are also illus-
trated in this figure. The zero-shear rate
viscosity is just equal to the ratio τ/γ̇ pro-
vided τ is smaller enough than τo to en-
sure that γ̇ is within the zero-shear rate
plateau region. The yield stress becomes
evident in the τ × γ̇ plot, because of the
plateau that occurs at τo. The behavior in-
dex n is the slope of the power-law region
in the log-log plot of τ×γ̇. The intercept of
the extrapolated power-law-region straight
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Figure 3: Shear stress as a function of
shear rate as predicted by Eq. (7).
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Figure 4: Viscosity as a function of shear
stress for the function given by Eq. (7).
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Figure 5: Derivative of shear stress with
respect to shear rate as a function of shear
stress for the function given by Eq. (7).

line with the vertical line at γ̇ = 1 s−1 oc-
curs at τ = K. This information can be
used to generate good initial guesses for
the curve-fitting parameter values in least-
squares fitting procedures. In Fig. 4 we can
observe the qualitative behavior of the vis-
cosity function corresponding to Eq. (7).
The zero-shear rate plateau is followed by
a sharp drop at τ = τo, and then it fol-
lows a power-law region. This behavior
is quite similar to the one presented by
the bi-viscosity function (Fig. 2), except
that there is no discontinuity in the curve
derivative at τ = τo. A good feature of Eq.
(7) is that it predicts a viscosity function
such that

lim
γ̇→0

η = ηo (8)

in contrast to the Papanastasiou func-
tion, which predicts an unbounded viscos-
ity function in the limit of zero shear rate.

Often the data do not present a viscos-
ity drop as sharp as predicted by Eq. (7).
For these cases, the exact yield stress value
is not so evident, and one possible proce-
dure to avoid subjectivity is to define τo as
the shear stress corresponding to the min-
imum derivative of the shear stress with
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Figure 6: Flow curve of a Carbopol aque-
ous solution.

respect to the shear rate, as illustrated in
Fig. 5. This derivative for a given set of
data can be easily evaluated by central dif-
ferences and then plotted as a function of
τ :

dτ
dγ̇

∣∣∣
i+1
' τ(γ̇i+1)−τ(γ̇i)

γ̇i+1−γ̇i

τi+1 = 1
2
[τ(γ̇i) + τ(γ̇i+1)]

(9)

where τ(γ̇i) is the measured shear stress
at γ̇ = γ̇i, and γ̇i, i = 1, 2, ...,m is the
monotonically increasing series of m shear
rate values at which measurements were
made.

FITTINGS TO SOME REPRESENTA-
TIVE DATA

We now illustrate the fitting capability
of Eq. (7) to data of a few viscoplastic liq-
uids that appear in industrial applications.
All data presented in this paper were ob-
tained in our laboratory with the aid of a
commercial rotational rheometer (ARES,
Rheometric Scientific). The tests were
conducted in strain-rate-controlled mode.
The geometry employed was a home-made
four-blade vane [8].
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Figure 7: Flow curve of a drilling mud.
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Figure 8: Flow curve of an oil/water emul-
sion with surfactant.

101

102

103

10-3 10-2 10-1 100 101 102 103

mayonnaise

τ

γ

η
0
 = 62000 Pa.s

τ
0
 = 109 Pa

K = 20 Pa.sn

n = 0.48

.
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In these figures we can observe that
the fittings are generally of good quality,
because the qualitative behavior of Eq.
(7) throughout the whole range of shear
rate is essentially the same as the one of
the data. Therefore, there is no need to
discard data pertaining to the low-shear-
rate range, which is undesirable because
often the parameter values obtained in the
curve-fitting procedure depend strongly on
the choice of the data to be discarded.

FINAL REMARKS

A viscosity function for yield-stress liq-
uids is proposed. It is continuous and has
continuous derivatives, as it is convenient
for numerical simulations and curve-fitting
procedures. Its qualitative behavior is the
same as the one observed for most vis-
coplastic liquids of interest, i.e., a high-
viscosity plateau at low shear rates, fol-
lowed by a sharp drop of the viscosity level,
and then a power-law region.
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