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ABSTRACT 
The gas-assisted displacement of a 

Oldroyd-B viscoelastic fluid contained in a 
circular tube (with inner radius R0) is 
modelled numerically. Good agreement 
between the simulations of the developed 
gas channel and the displacement 
experiments performed by Hyzyak and 
Koelling1 is obtained,  comparing fractional 
coverage (defined as 1-R/R0 where R is the 
radius of the penetrating gas front). 

  
INTRODUCTION 

     During the resent years several 
publications (for instance Hyzyak and 
Koelling1 and Gauri and Koelling2) have 
concerned gas assisted displacement of 
viscoelastic fluids (polymer melts and 
polymeric solutions) contained in a circular 
cylinder: As the gas is injected into one of 
the ends of the cylinder, it leaves a fluid 
layer of uniform thickness on the inner 
surface of the cylinder. This is a simple 
model system used to investigate the gas-
fluid displacement, as the problem is 
reduced to an axis-symmetric flow problem. 

The understanding of this gas-fluid 
displacement process is relevant for the 
geometrically much more complex polymer 
processing operation Gas-assisted injection 
moulding (GAIM). This is a process, where 
a mould is filled partly with a molten 
polymer, followed by the injection of an 
inert gas into the core of the polymer melt. 

The numerical analysis of the fluid flow, 
concerning the gas fluid displacement, have 
to our knowledge, only been based on 
Newtonian or generalised Newtonian fluid 
models until now. As polymer melts and 
polymeric solutions are viscoelastic fluids 
an increased understanding of the 
displacement process can be achieved 
performing numerical simulation based on a 
viscoelastic model. This is especially 
important in processes that are dominated by 
stretch (e.g. elongation) of the fluid, as the 
GAIM. The stretch occurs in the fluid being 
displaced in front of the gas. 

Here we will focus on the work by 
Hyzyak and Koelling1. They performed 
displacement experiments on diluted 
solutions of linear polymers, normally 
referred to as Booger fluids. These fluids 
have almost constant shear viscosities and 
elongational viscosities several order of 
magnitudes larger than the shear viscosities, 
at elongational rates above a certain value. 

 
RHEOLOGY 

The simplest possible model to describe 
the constitutive equation of Boger fluids is 
the Oldroyd-B model. This model has, with 
success, been able to describe the complex 
flow behaviours of Boger fluids. Though, 
refinements in the flow analysis can be 
obtained using more complex constitutive 
models. To keep the flow analysis as simple 
as possible the Oldroyd-B constitutive 
model will be used throughout this paper. 
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The stress build-up in the fluid, e.g. the 
Oldroyd-B constitutive equation, is given in 
integral form as3 
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The stress comes from two contributions: 
The polymer stress given by a memory 
integral (the exponential function) over the 
finite strain tensor, γ[0], and the solvent 
contribution as a Newtonian term. Note that 
ß is a non-dimensional parameter, where 
0<ß<1. 
 

 
Figure 1. Finite element mesh in the area 

around the flow front, in a cylindrical 
coordinate system, (r,z). 

NUMERICAL MODELLING 
A numerical method is needed in order 

to calculate the flow of the viscoelastic fluid 
during the displacement. To model the 
displacement numerically, the time-
dependent finite element method from 
Rasmussen4 is used. This method has 
second order convergence both in time and 
spatial discretization. 

An example of a part of an actual finite 
element mesh at the end of one of the 
simulations is illustrated in Fig. 1. The 
boundary conditions used in the (axis-
symmetric) simulations are no-slip 
conditions on the cylinder wall, no shear 
stresses and constant normal stress plus 
pressure on the free surface where the gas is 
displacing the fluid and an imposed 
Newtonian velocity profile at the outlet. 
 
NON-DIMENSIONAL GROUPS 

The important non-dimensional groups 
in the displacement are the Deborah number, 
the surface elasticity, the Capillary number 
and of course the viscosity ratio ß from the 
Oldroyd-B model. The Deborah number is 
in a general definition (e.g. independent of 
constitutive equation) given as the ratio 
between the first normal stress coefficient, 
? 1, and the total viscosity, ?, (this ratio 
represent a characteristic time constant of 
the process) and multiplied with a 
characteristic deformation rate in the process 
(here the steady shear rate at the wall of the 
tube). Hence 
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In this form all parameters depends on the 
characteristic deformation rate of the 
process. For the Oldroyd-B constitutive 
equation 
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where U and R0 are the average velocity of 
the flow and the radius of the cylinder, 
respectively. 

The classical non-dimensional measure 
of the surface tension is the Capillary 
number, Ca, given as the ratio of the viscous 
stresses relative to the surface tension (s ) 
stresses. Note that in all our following 
calculations we use Ca=0 (no surface 
tension, s ) as Hyzyak and Koelling1 scale 
out the effect of the surface tension in the 
performed experiment in a way discussed 
later. 

Another non-dimensional measure of the 
surface tension is the surface elasticity 
number. It is given as the ratio of the surface 
tension stresses relative to the elastic 
modulus. This type of measure is only 
material dependent. For the Oldroyd-B 
constitutive model it is normally defined as 
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Note that the Newtonian viscous part of the 
constitutive equation is not included in this 
parameter. 
 

 
Figure 2. Shape of the flow front in a 

cylindrical coordinate system, (r,z). The 
simulations at De=5 (inner curve) and 
De=0.1 (outer curve) at steady state. 

FLOW FRONT 
The numerically calculated steady shape of 
the flow front is shown in Fig. 2 at high and 
low De number. Note that the axes are in 
scale. 
The flow front is, at high De numbers, 
suppressed due to the bi-axial elongational 
deformation in the area around the tip of the 
flow front, developing strong elastic forces 
in the fluid. 

Figure 3. Reduced fractional coverage  

Nm
m

 as function of the De number. The line 

represents Oldroyd-B simulations (using 
ß=0.5), and the ?  (fluid B-35) and ?  (fluid 

B-100) are the experiments from Figure 8 in 
Hyzyak and Koelling1. 

 
THE FRACTIONAL COVERAGE 

Using the above definitions good 
agreement between the Oldroyd-B 
displacement simulations and the 
experiments by Hyzyak and Koelling1, is 
obtained, comparing the fractional coverage, 
m. The fractional coverage is defined as 
m=1-R/R0 where R is the radius of the 
penetrating gas front. 

The fractional coverage is a function of 
the non-dimensional parameters (ß, De and 
Ca), though Hyzyak and Koelling1 scale out 
the effect of the surface tension, dividing the 
fractional coverage with the fractional 
coverage from a Newtonian displacement 



experiments, mN, with the same Capillary 
number, leaving out the effect of ß and De. 

In the calculations we use a ß value of 
0.5, which correspond to average value of 
the two fluids used in the experiments by 
Hyzyak and Koelling1. Further experimental 
details and information of the properties of 
the two fluids (named B-35 and B-100) may 
be found in Hyzyak and Koelling1. 

The steady-state reduced fractional 
coverage as a function of the De number is 
shown in Fig. 3. The line is the numerical 
simulations while the individual symbols are 
the experiments from Hyzyak and 
Koelling1. The experiments and simulations 
show the same qualitative dependence on 
the Deborah number, indicating that the 
Oldroyd-B model gives a reasonable 
prediction of the steady fractional coverage. 
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