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ABSTRACT

We report theoretical and numerical re-
sults on the convection of a magnetic fluid
in a viscoelastic carrier liquid. The non-
Newtonian material properties are taken
care of by a general hydrodynamic nonlin-
ear viscoelastic model that contains, but
is more general than the standard Oldroyd
and Giesekus phenomenological rheological
equation for the stress tensor. We explore
the nonlinear behavior beyond the linear
threshold using a truncated Galerkin ex-
pansion. As a result, a set of ten equa-
tions is obtained describing the time evolu-
tion of the mode amplitudes, which can be
viewed as a generalized Lorenz system. We
find numerically the system’s stationary,
periodic, multiple-periodic, quasi-periodic,
weakly chaotic, and chaotic regimes by in-
vestigating power spectra, bifurcation di-
agrams, and phase portrays. The various
types of dynamical behavior are discussed
as a function of the Rayleigh number, the
magnetic field strength, and the linear and
nonlinear viscoelastic material parameters,
like relaxation times and elastic moduli.

INTRODUCTION

Ferrofluids are magnetic fluids formed
by a stable colloidal suspension of magnetic
nano particles dispersed in a carrier lig-
uid. Without an applied external magnetic
field the orientations of the magnetic mo-
ments of the particles are random resulting
in a vanishing macroscopic magnetization
(magnetic disorder). An external magnetic
field, however, easily orients the particle
magnetic moments and a large (induced)

magnetization is obtained. In the last
decades much efforts have been dedicated
to the study of the convective mechanisms
in ferrofluids. In particular, heat transfer
through magnetic fluids has been one of
the leading areas of scientific study due to
its technological applications [1]. The fer-
rofluid convection has applications in high-
power capacity transformer systems, where
the ferrofluid is used as a material in the
core as well as a coolant in the transformer.
An important application of ferrofluids lies
in the biomedicine area where the carrier
liquid is blood [2-6] which is known to have
also special rheological proprieties [7-9]. In
addition, when a magnetic field is applied,
a ferrofluid can acquire additional rheolog-
ical properties such as magneto-viscosity,
adhesion, and other non-Newtonian behav-
ior [10-19]. Hence, a detailed study of vis-
coelastic magnetic fluids is quite important
and in order.

Several experiments of convection in
ferrofluids have been reported [20-31], de-
spite the fact that simple optical observa-
tions of flow patterns are hampered by the
black appearance of the material. Thermal
anemometry [21], micro thermistors [26],
and small angle neutron scattering [22] can
be used, instead.

Viscoelastic properties of fluids can be
described by a constitutive equation, which
relates the stress and strain rate tensors.
The simplest constitutive equation capable
of describing realistically the viscoelastic
properties is given by the so-called Oldroyd
model [32]. It has been found that, be-
sides the usual stationary convection, also

35



oscillatory states can be obtained at on-
set. Which type of convection - stationary
or oscillatory - appears first, will depend
on the values of the rheological parame-
ters. Experimental measurements of oscil-
latory convection in viscoelastic mixtures
were reported by Kolodner [33] in a DNA
suspension; and theoretical studies of the
convection thresholds for binary Oldroyd
mixtures in different types of fluids, can
be found in Refs. [34-38|. Recently, stud-
ies on stationary and oscillatory convec-
tion in Oldroyd magnetic fluids have been
done [39-42]. By a somewhat different
approach, a generalized prototype model
for non-Newtonian fluids was presented by
Pleiner et.al. (PLB) in Ref. [43] to describe
the rheology of viscoelastic fluids in terms
of the strain tensor. The authors obtained
a valid hydrodynamic description of vis-
coelasticity for arbitrarily large deforma-
tions, rotations and flow. Taking the solid
limit correctly the structure of the equa-
tions is determined completely. In addi-
tion, typical viscoelastic models, such as
Maxwell, Oldroyd, Giesekus, etc. are con-
tained in the PLB model in certain lim-
its. We use this prototype model and fo-
cus on the nonlinear system in the case of
two dimensional solutions (roll patterns).
We show that the system can exhibit sta-
tionary, oscillatory and chaotic regimes de-
pending on the control parameters.

BASIC EQUATIONS

We consider an (infinte) horizontal
layer of thickness d of an incompressible
magnetic ferrofluid with a viscoelastic car-
rier liquid in a vertical gravitational field
g = gz and subject to a positive tempera-
ture difference § across the layer (heating
from below). An external magnetic field
H, is assumed along the vertical direction.
Within the Boussinesq approximation, the
dimensionless equations for the perturba-
tions from the convection-free, heat con-
ducting state can be written as

V.v=0 (1)

d = v, + V30
(Ozz + M3[O0py + Oyy])p — 0.0 =0
Vngemt =0

with the abbreviation 3 = M;(V0)(0.¢)+
z(0 + M0 — 0,¢]). Here {v,0,¢} are the
dimensionless velocity, temperature, and
magnetic potential perturbation, respec-
tively. The perturbation equation for Uj;
reads

dtUij — Dij + Ui Vv + Uy Vivg =
1 1 (6)
— —U,;; — =—U;;Us.
Fl FQ kY jk

This implies for the stress tensor in Eq. (2)

oy = — F Uiy + EUpUj — 2Dy (7)
— Z(UirDji, + Uj Dig)
In Eqgs. (1)—(7), the following dimen-
sionless numbers have been introduced, the
Rayleigh number, Ra ~ (8, accounting for
buoyancy effects due to the heating; the
Prandtl number, P, relating viscous and
thermal diffusion time scales; the strength
of the magnetic force relative to buoyancy,
measured by the parameter M; ~ H2; the
nonlinearity of the magnetization, M3 —
1 ~ HZ, a measure for the deviation of
the magnetization curve from the linear be-
havior; the linear and nonlinear relaxation
times I'; o and elastic moduli £ 5, and the
nonlinear viscosity Z, which are all posi-
tive.
On the linear level (I'y = By = Z = 0)
it is easy to recover the standard (linear)
Oldroyd model

(1+10,)0;; = (1 +A0)Dy; (8)

containing the Deborah number I' and the
retardation number, A. Both descriptions
are equivalent with I' = I'; and A =
(1 + E4T4) 1, revealing however that A is
restricted to 0 < A < 1. The kinematic
viscosity 14, used to scale the time in the
viscoelastic description, is related to the
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Figure 1: (Color Online) The time dependence

of the stream function amplitude in the station-
ary regime for three different values of r - the
continuous, dashed, and dash-dotted curves are
for r = (0.5,1.5,2.5), respectively, for M; = 10
and M3 = 1.1. The other fixed parameters are
k=mn/V2, P =10, B, = 10, By = 1, Z = 0.5,
Fl = 0.1 and Fg =0.1.

asymptotic viscosity Vs (used in the Ol-
droyd case) by vs = 11 /A.

TWO DIMENSIONAL SYSTEM

In this section we solve numerically
the system of equations using a trun-
cated Galerkin method. For the sake of
simplicity, the analysis is limited to two-
dimensional flows, v = {—0,%, 0, d,%} in-
troducing the stream function 7. In par-
ticular, we assume periodicity with wave
number k in the lateral direction, z, de-
scribing 2-dimensional convection rolls par-
allel to the y-axis. By the definition and
symmetry of U;;, we only have three com-
ponents in the 2-dimensional case.

We impose idealized thermal and mag-
netic boundary conditions [42] and assume
rigid boundary conditions for the stream
function and the strain tensor components
at z = {0,1}. For the numerical solution
we will restrict ourselves to the fundamen-
tal mode in the lateral direction, neglecting
higher harmonics, while in the z-direction
across the layer a multimode description
will be used that fulfills the boundary con-
ditions, automatically [44,45].

Substituting the trial functions into
the dynamic equations and multiplying

0 5 10 15 20
M,
Figure 2: (Color Online) The saturation value

X1,sat = X1(7 — 00)| as a function of M; for three
different values of Mj - the dashed, continuous,
and dash-dotted curve are for M3 = (0.5,1.0, 3.5),
respectively, at r = 2.5. Other fixed parameters
as in Fig. 1

these equations by the orthogonal eigen-
functions and integrating over a convec-
tion cell, yields a set of ten ordinary dif-
ferential equations for the time evolution
of the amplitudes. They are solved via
a standard fourth order Runge-Kutta in-
tegration scheme with a fixed time step
dt = 0.01 guaranteeing a precision of 1078
for the amplitudes. For each set of param-
eters we evolve the numerical solutions at
10° time steps in order to avoid observing
purely transient phenomena. This system
is a generalization of the Lorenz system,
hence we expect that the system can ex-
hibit complex behaviors.

NUMERICAL RESULTS

Fig. 1 shows the normalized stream
function amplitude, X, as a function of
time 7 for three different values of Ra.
After a transient, X; tends to a station-
ary value, which is zero for r < 1 and,
for r > 1, finite and increasing with in-
creasing 7. Here, 7 is the Ra number nor-
malized by the stationary threshold value
Ras. [42]. In Fig. 2 the magnetic field
dependence of the saturation amplitude
value X4 = X1(t — o0) at r = 2.5
is shown for three different values of Msj.
The amplitude increases with a power law
(X1 sat(M) — X1 4(0)] ~ M;Y¢ where &
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Figure 3: Amplitudes in a periodic regime at r =
95, M; = 10, M3 = 1.1. At the top the time
dependence of X is shown and at the bottom the
corresponding normalized Fourier power spectrum
is plotted. The other fixed parameters are as in
Fig. 1.

depends on r and the rest of the material
parameters. Obviously, a magnetic field
has a destabilizing effect increasing the sat-
uration amplitude.

Figures 3 and 4 show the system in
a periodic state, which is obtained for
higher r. In Fig. 3 the time dependence
of the normalized stream function, X, is
shown in the top frame, while the bottom
frame shows the corresponding normalized
Fourier power spectrum. There are odd
higher harmonic peaks in the spectrum,
Q, = Qo(2n + 1), such that €; is high-
est and those for n > 2 are unimportant.
A 3D phase portrait of {Xi, X3, X4} for
this state is shown in Fig. 4. It describes
a stable non-symmetric X7 X3 orbit in the
Sparrow notation [46].

Figures 5 and 6 show the system in a
different periodic state, which is obtained

Figure 4: 3D phase portrait of {X;, X3, X4} for
the periodic regime shown in Fig. 3.

for rather low r values, but for higher elas-
tic moduli, #; and F,. Again, the time
dependence of the normalized stream func-
tion, X, is shown in the top frame and its
corresponding normalized Fourier power
spectrum in the bottom frame. Here, the
fundamental peak is the most important
one, while the odd higher harmonic peaks
are pairwise reduced in height. The appro-
priate 3D phase portrait of { X, X3, X4} in
Fig. 6 shows a non-symmetric homoclinic
orbit. Clearly, this periodic state at high
elastic moduli is different from the one ob-
tained at a high r number.

Figures 7 and 8 show the system in a
chaotic regime at a rather low 7 value. The
aperiodic time behavior is manifest in the
upper part of Fig. 7, while the lower part
reveals the continuos nature of the corre-
sponding Fourier power spectrum indicat-
ing the chaotic nature of this state. Figure
8 shows the appropriate 3D phase portrait
having the form of a strange attractor sim-
ilar to the Lorenz attractor. It should be
noted that this chaotic state comes at a
much lower 7 value than the periodic one
of Figs. 3 and 4 (with all other parameters
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Figure 5: Amplitudes in a periodic regime ob-
tained at higher elastic moduli, F4 = 500, Es =
100, but lower r = 13. At the top the time de-
pendence of X7 is shown and at the bottom the
corresponding Fourier power spectrum is plotted.
The other fixed parameters are as in Fig. 1 except
for Z = 3.

identical). This indicates a rather com-
plicated bifurcation behavior as a function
of r with alternating chaotic and periodic
states. A comprehensive discussion of the
complex bifurcation diagram will be given
elsewhere.

Here, we will show the bifurcation di-
agrams as a function of the linear elastic
modulus F; and of the nonlinear viscosity
Z in Figs. 9 and 10, respectively. These
diagrams are obtained by calculating the
time series of the amplitudes for many dif-
ferent, random initial conditions. Taking
the local maximum values within a certain
time slot of, e.g., | X1(7)| reveals the differ-
ence between a regular (stationary or os-
cillatory) and a chaotic behavior. in the
former case only one or a few maximum
values are found, while in the latter one a
continuous-like assembly of such maximum

Figure 6: 3D phase portrait of {X;, X3, X4} for
the periodic regime shown in Fig. 5.

values is present. The bifurcation diagram
as a function of the elastic modulus F;
shows chaos to only exist for intermediate
values of Iy, while for small and large ones
regular (stationary and oscillatory) behav-
ior is found. Increasing F; further the con-
vection amplitude decreases due to the en-
hanced stiffness of the fluid. In addition,
a large nonlinear viscosity (large Z) sup-
presses chaos and reduces the convection
amplitude in an almost discontinuous man-
ner as is shown in Fig. 10.

SUMMARY

In the present work, Rayleigh-Benard
convection in a magnetic viscoelastic lig-
uid is studied. For the viscoelastic prop-
erties the PLB model [43] is used. Similar
to the Lorenz approach [44], a set of ten
coupled linear ordinary differential equa-
tions is obtained. In the case of the sta-
tionary bifurcation we observe that the ab-
solute value of the stream function ampli-
tude (related to the velocity) increases with
the external field and is independent of the
viscoelastic properties. Due to the visco-
elastic properties the system also has an
oscillatory bifurcation. We discuss two dif-
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Figure 7: Amplitudes in a chaotic regime at a
rather low r = 13. At the top the time dependence
of X is shown and at the bottom the correspond-
ing normalized Fourier power spectrum is plotted.
The fixed parameters are as in Fig. 1.

ferent periodic states, one at high Rayleigh
number and low elastic moduli and vice
versa. They are rather different, in par-
ticular in their nonlinear, higher harmonic
behavior. In addition, chaotic behavior is
found. It can already occur at rather small
Rayleigh numbers, but period states at
higher Rayleigh numbers occur in-between
chaotic ones. The existence range for chaos
strongly depends on the material proper-
ties, in particular on the viscoelastic and
magnetic ones. The chaotic regime has
been characterized by using bifurcation di-
agrams and Fourier power spectrum calcu-
lations, as well as phase portraits.
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