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ABSTRACT 
      The pom-pom hypothesis (i.e. side 
chains are drawn into the backbone tube as 
soon as the backbone tension equals the 
number of branches at each end) has never 
been verified. The Molecular Stress 
Function model considering: dynamic 
dilution, finite extensibility, transition from 
chain stretch to tube squeeze, and dynamics 
of branch point withdrawal, confirms the 
hypothesis. 

 
INTRODUCTION 
      The Doi-Edwards (DE) model1 is able to 
describe some rheological phenomena, but 
its general performance is more qualitative 
than quantitative. To avoid its limitations, 
theories accounting for chain stretch have 
been proposed. 
      A theory considering chain stretch is the 
so called Pom-Pom model2. The main 
motivation was to develop a model for 
predicting simultaneously strain hardening 
in elongational and shear thinning in shear 
flow for long-chain-branched polymers like 
low-density polyethylene (LDPE). The basic 
topology modeled is a linear backbone with 
q side chains at each end, i.e. a pom-pom 
molecule. The original Pom-Pom model2 
was presented in integral form, but the 
differential approach became much more 
popular, although it is only a crude 
approximation of the integral model3. 
      In the linear-viscoelastic regime, the 
basic assumption of the Pom-Pom model is 
that the side branches relax fast enough to 
act as un-entangled solvent for the 
backbone, which then relaxes by reptation. 

This is called “dynamic dilution”4. In the 
non-linear deformation regime, the 
fundamental hypothesis is that the maximum 
stretch exerted on the backbone is limited by 
branch point withdrawal, i.e. retraction of 
the free ends into the original backbone tube 
as soon as the maximum stretch is equal to 
the number of dangling arms2. The actual 
occurrence of branch point withdrawal and 
its significance in the rheology of branched 
polymers has not been verified so far. 
      Another widely applied approach, also 
based on the DE theory, is the Molecular 
Stress Function (MSF) model5. A new 
version of the MSF model was proposed 
recently by introducing the interchain 
pressure term6 in the evolution equation of 
the stretch. In this way, the steady-state as 
well as the transient elongational viscosities 
of 4 nearly monodisperse polystyrene (PS) 
melts could be modelled quantitatively by 
use of a single nonlinear material parameter, 
the tube diameter relaxation time aτ

7. Also, 
non-Gaussian chain extensibility effects 
were introduced in the MSF model to 
describe deviations from the stress optical 
rule in elongation of two nearly 
monodisperse PS melts8.  
      It remains a challenge to verify model 
assumptions embedded in constitutive 
equations by comparison with well-defined 
and well-characterized model polymers. 
Recently, elongational viscosity data of a 
well-defined pom-pom PS melt up to large 
Hencky strains were presented9. It is the aim 
of the present contribution to analyze these 
data9 in the frame of the original integral 
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version of the Pom-Pom model, and by use 
of the MSF model with strain-dependent 
tube diameter, and to elucidate whether the 
fundamental pom-pom hypothesis, i.e. 
branch point withdrawal at a relative tension 
corresponding to the number of arms, is 
valid or not. 
 
EXPERIMENTAL DATA 
      The experimental data analyzed are 
those of Nielsen et al.9 The polymer sample 
has a well-defined pom-pom architecture 
with molecular weight of the backbone Mb 
and of the arm Ma being 140,000g/mol and 
28,000g/mol, respectively. Each branch 
point has an average of q=2.5 arms. The 
measurement temperature was 130°C. A 
discrete relaxation spectrum with partial 
moduli gi and relaxation times λi was 
obtained by use of the IRIS program from 
master curves of ´G and ´´G . Linear-
viscoelastic parameters and molecular 
characterization are presented in Table I. 
 
THEORY 
The Pom-Pom model 
     
      The Pom-Pom model version considered 
here is a multimode approach of the original 
integral model. Considering only the stress 
contribution of the backbone, the extra 
stress tensor is given by  
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An eight-mode Pom-Pom model is 

used here. The strain measure 
DE

S  
represents the orientation and equilibration 
of the tube segments and is given by 
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Table 1. Molecular data and relaxation 
spectra of pom-pom PS sample at 130 °C 

q 2.5 
)( 10 −PaJ e  5.190 x10-5 

).(0 sPaη  1.202 x108 
)/(, molkgbMn  140 
)/(, molkgaMn  28 

ig [Pa] iτ [s] 
1.021 x107 2.390 x10-3 
1.016 x105 1.853 x100 
4.046 x105 1.119 x10-1 
8.980 x104 1.241 x101 
3.656 x104 7.636 x101 
2.081 x104 6.338 x102 
1.661 x104 4.223 x103 
2.404 x103 1.361 x104 

     
t is the time of observation, and t’ indicates 
the time of creation of a tube segment. ''uu  
is the dyad of a deformed unit vector ´u  
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tt
−− =  is the relative deformation 

gradient tensor, and 'u  is the length of 'u . 
The orientation average is indicated by  
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i.e. an average over an isotropic distribution 
of unit vectors u . The pre-factors iλ  
represents the backbone stretch of each 
Pom-Pom mode i, governed by the evolution 
equation 
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κ is the velocity gradient and is,τ  are the 
stretch relaxation times of each  mode, taken 
as suggested by Inkson et al.10 as 
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      The maximum value of the backbone 
stretches iλ  is 
 

5.2max, == qiλ           (7) 
 
The Molecular Stress Function model  

The extra stress tensor )(tσ  of the 
MSF model is given by  
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      The molecular stress function 

´),( ttff =  is inverse proportional to the 
tube diameter a, 
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representing the relative tension or stretch of 
tube segments with an equilibrium tube 
diameter a0. The strain measure IA

DE
S  is 

based on the “independent alignment (IA)” 
approximation1 and represents an affine 
rotation of the tube segments, 
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with )',( ttSS =  being the relative second 
order orientation tensor.  
 Comparing Eq.(8) to equation (1), 
there are three differences: (a) The stretch 
term is not outside, but inside the integral in 
Eq. (8). (b) The same stretch is assumed for 
all relaxation modes. (c) The IA assumption 
is used in Eq. (8).  

As shown by Wagner et al.7, based 
on the interchain pressure concept6, the 
evolution equation for the tube diameter in 
elongational flow is given by 
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with aτ  being the tube diameter relaxation 
time7. In Eq.(11), the first term on the right 
hand sides describes an on average affine 
deformation and the second, the interchain 
pressure contribution.  
 
The MSF model with finite extensibility 

With finite chain extensibility effects 
(FENE), tension f and stretch λ  in the chain 
are different. The MSF model is then given 
by8 
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with l the deformed and l0 the equilibrium 
tube lengths. The FENE effect is 
implemented in the MSF theory as8 
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with c a nonlinear spring coefficient, 
representing a relative Padé approximation11 
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mλ is the maximum stretch attainable. For 

PS a value of 5=mλ  is found8. The 
evolution equation with FENE effect is then 
obtained as8 
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Eq.(16) reduces to Eq.(11) in the Gaussian 
limit, i.e when c=1, and therefore f=λ.  
 
ANALYSIS OF EXPERIMENTAL DATA 
      Fig.1 presents the elongational viscosity 
data9 for elongation rates of ε& from 3.10-5 to 
0.1s-1 at 130°C. At smaller elongation rates, 
the data indicate a steady-state, while at the 
highest elongation rate, a significant 
maximum in the elongational viscosity is 
observed. None of the models discussed so 
far can explain these maxima. The 
predictions of the 8-mode Pom-Pom model, 
Eq.(1)-(7), are also in Fig 1. The start-up of 
the  elongational viscosity is overestimated 
and the steady-state is significantly 
underestimated by the Pom-Pom hypothesis 
of 5.2max, == qiλ . 
      For the MSF model, and based on 
arguments preciously proposed5, the tube 
diameter relaxation time is related to the 
maximum tension by12 
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leading to an evolution equation of the form 
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      From the  pom-pom  hypothesis, maxf  is  
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mina  is the minimum tube diameter of the 

backbone. Predictions using Eqs.(8), (18), 
and (19) are presented in Fig.2. 

 
Figure 1. Comparison of measured data to 

an 8-mode Pom-Pom model. 
 
      The start-up of the transient   
elongational   viscosity     is   now predicted 
correctly, but the steady-state is still 
underpredicted.  
      Dynamic dilution leads to a dilation of 
the tube diameter, and thereby a reduction in 
the tension of the backbone chain. 
Assuming complete relaxation of the pom-
pom arms, the remaining weight fraction w 
of the backbone is 
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      The equilibrium value of the tube 
diameter a0 is thereby increased by a factor 
of 1/w, resulting in a maximum 
stretch maxf of 
 
 

 
 

Figure 2. Comparison of measured data to 
predictions by MSF model. 
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      The relative tension in the backbone 
must increase by a factor of 5 relative to its 
equilibrium tension before the dangling side 
chains are drawn into the tube of the 
backbone. Predictions of the MSF model 
with Eqs.(8), (18), and (21) are presented in 
Fig.3. Agreement is improved with the 
dynamic dilution effect, although the 
maxima are now slightly overpredicted.  
      So far, Gaussian chain statistics has been 
assumed.      However,        the      maximum 
extensibility mλ  of the backbone even 
taking into account the dilution effect is 
only 
  

75/
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which is of the same order of magnitude as 
the maximum relative tension 5max =f . 
Thus, finite extensibility must be used. From 
Eqs.(14) and (15), for a tension of  5max =f , 
a relative stretch of 91.3max =λ  is found. 
With aτ  in Eq.(16) given as 
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Figure 3. Comparison of measured data to 
predictions by MSF model considering 

dynamic dilution. 

 
Figure 4. Comparison of measured data to 

predictions by MSF model considering 
dynamic dilution and finite extensibility. 

 
the evolution Eq.(16) takes the form 
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  Predictions of the MSF model with FENE 
are presented in Fig. 4. Note that perfect 
agreement at the higher elongation rates and 
up to the maximum of the elongational 
viscosity is achieved without any free 
parameters of the model, but is solely based 
on the molecular quantities q and w defined 
by the structure considered.  
      Predictions for smaller elongation rates 
can be improved by considering a cross-over 
from affine stretch to tube squeeze13, which 
leads to an evolution equation of the form 
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      As seen in Fig.5, with aτ  from Eq.(23) 
and a value of the stretch relaxation time of 

sτ s 5000= , good agreement between 
experimental data and model up to the 
maximum of the elongational viscosity is 
achieved for all deformation rates measured.   
      It is obvious from Fig.5 that the 
maximum in the elongational viscosity is 
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reached when the tension in the backbone is 
as  high  as  the  combined  tension  of  the q  
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Figure 5. Comparison of measured data to 

predictions by MSF model considering 
dynamic dilution, FENE and cross-over 

from affine stretch to tube squeeze. 
 
dangling  arms,  and  the  dangling  arms  
are drawn into the tube of the backbone. 
      As a possible explanation for the 
maximum in the elongational viscosity we 
advance the hypothesis that when the 
dangling arms are drawn into the tube of the 
backbone, they loose their character as 
individually entangled side chains and 
behave as a single entity, thereby elongating 
the backbone on each side by a length 
equivalent to Ma. After the maximum, the 
pom-pom melt will therefore transit to a 
deformation behavior as observed in the 
case of a monodisperse linear melt with 
molar mass Mb+2Ma=196,000g/mol. A melt 
of this molar mass is expected to show a 
constant tube diameter relaxation time aτ , 
which can be estimated from Wagner et al.7 
as sτ a 270=  at 130°C. As a possible cross-
over function we propose 
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      This is motivated by the fact that 
><= 'ln ueλ as long as the stretch is affine, 

while  when  λ   reaches  its maximum value  
and    then   starts   to   decrease,  >< 'ln ue  still 
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Figure 6. Comparison of measured data to 

predictions by MSF model considering 
considering dynamic dilution, FENE, cross-
over from affine stretch to tube squeeze and 

backbone extension. 
 
increases. For a value of sτ r 2= , excellent 
agreement between experimental data and 
predictions of Eqs.(13), (17), and (26) is 
obtained as seen in Fig.6. It should be 
mentioned  that  rτ   is  of  the  order  of   the 
stretch relaxation time of the dangling arms 
as reported by Nielson et al.9.     
 
CONCLUSIONS 
      The fundamental pom-pom hypothesis, 
i.e. the retraction of the q side chains into 
the tube of the backbone starts as soon as 
the relative tension in the backbone reaches 
a value of q, is confirmed here for the first 
time.  
      To achieve quantitative agreement 
between experiment and modelling, it is 
essential to assume a time- and strain-
dependent  tube  diameter,  and  to  place the 
expressions of stretch and tension inside the 
integral. The equilibrium tube diameter of 
the backbone increases by dynamic dilution 
of the backbone due to the relaxation of the 
dangling arms. This reduces the equilibrium 
tension in the backbone and has a crucial 
impact on the force equilibrium at the 
branch points. The relative tension which is 
needed for branch point withdrawal is 



increased by this effect by a factor which is 
inverse proportional to the weight fraction 
of the backbone.  
      To  get  quantitative  agreement between 
experiment and model, FENE effects have 
to be taken into account, and the difference 
between relative tension and relative stretch 
has to be considered.  
      At lower strain rates, a transition from 
affine chain stretch to tube squeeze is 
observed, i.e. the stretch is no longer affine 
with the macroscopic stretch, but is caused 
by an affine reduction of the tube diameter.     
      The maximum observed in the 
elongational viscosity may be explained by 
the hypothesis that when the dangling arms 
are drawn into the tube of the backbone, 
they loose their character as individually 
entangled side chains, and the 
macromolecule behaves as a single linear 
entity. 
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