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ABSTRACT 
          The fully developed thermal field in 
constant pressure gradient driven laminar 
flow of viscoelastic fluids in straight pipes 
of arbitrary contour ∂D is investigated. The 
nonlinear fluids considered are 
constitutively represented by a class of 
single mode, non-affine constitutive 
equations. The driving forces can be large 
and inertial effects are accounted for. 
Asymptotic series in terms of the 
Weissenberg number Wi are employed to 
represent the field variables. Heat transfer 
enhancement due to shear-thinning is 
identified together with the enhancement 
due to the inherent elasticity of the fluid. 
The latter is the result of secondary flows in 
the cross-section. Increasingly large 
enhancements are computed with increasing 
elasticity of the fluid as compared to its 
Newtonian counterpart. Large enhancements 
are possible even with dilute fluids. 
Isotherms for the temperature field are 
presented and discussed for several non-
circular contours such as the ellipse and the 
equilateral triangle together with heat 
transfer behavior in terms of the Nusselt 
number Nu. 
 
I. INTRODUCTION 
        Experimental findings concerning heat 
transfer characteristics of aqueous polymer 

solutions flowing in straight tubes point at 
considerable enhancement as compared to 
its Newtonian counterpart driven by the 
same conditions and in the same geometry.  
Specifically, it is reported that heat transfer 
results for viscoelastic aqueous polymer 
solutions are considerably higher in flows 
fully developed both hydrodynamically and 
thermally, as much as by an order of 
magnitude depending primarily on the 
constitutive elasticity of the fluid and to 
some extent on the boundary conditions, 
than those found for water in laminar flow 
in rectangular ducts, Hartnett and Kostic1,2. 
Heat transfer phenomena in laminar flow of 
nonlinear fluids with the exception of 
inelastic shear-thinning fluids in tubes of 
rectangular cross-section has not been the 
subject of many investigations in spite of the 
widespread use of some specific contours in 
industry such as flattened elliptical tubes. 
This statement rings true for all cross-
sectional shapes for both steady and 
unsteady phenomena including quasi-
periodic flows. Heat transfer research with 
viscoelastic fluids was declared to be a new 
challenge in the early nineties, Hartnett3, but 
progress has been limited since that time.          
Highly enhanced heat transfer to aqueous 
solutions of polyacrylamide and 
polyethylene of the order of 40% to 45% as 
compared to the case of pure water in 
flattened copper tubes was observed by 
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Oliver4, and later by Oliver and co-workers 
as early as 1969. Recent numerical 
investigations in rectangular cross-sections 
of Gao and Hartnett5,6, Naccache and Souza 
Mendes7, Payvar8 and Syrjala9 establish the 
connection between the enhanced heat 
transfer observed and the secondary flows 
induced by viscoelastic effects.  The former 
researchers as well as Naccache and Souza 
Mendes predict for instance viscoelastic 
Nusselt numbers as high as three times their 
Newtonian counterparts. Gao and Hartnett5 
report results for rectangular contours which 
provide evidence that the stronger the 
secondary flow (as represented by the 
dimensionless second normal stress 
coefficient Ψ2) the higher the value of the 
heat transfer (as represented by the Nusselt 
number Nu) regardless the combination of 
thermal boundary conditions on the four 
walls. Constant heat flux is imposed 
everywhere on the heated walls in their 
experiments with the remaining walls being 
adiabatic. The combination of boundary 
conditions also plays some role in the 
enhancement as reported with the largest 
enhancement occurring when two opposing 
walls are heated. Despite these efforts heat 
transfer characteristics of viscoelastic fluids 
in steady laminar flow in rectangular tubes 
remains very much an open question.   
         It must also be pointed out that the 
shear rate dependent viscosity of purely 
viscous fluids (negligible relaxation time) is 
responsible for enhanced and reduced heat 
transfer in the case of shear thinning and 
shear thickening fluids, respectively, as 
shown by Gingrich et al10 and others . But 
there is evidence in the literature that in the 
case of viscoelastic fluids the effect of the 
shear rate dependent viscosity on heat 
transfer enhancement is at least two orders 
of magnitude smaller when compared to the 
influence of the secondary flow Naccache 
and Souza Mendes7. Thus the latter remains 
the dominant mechanism for enhanced heat 
transfer.  

        In this paper we investigate the heat 
transfer behavior of a class of non-affine 
viscoelastic fluids in straight tubes of non-
circular contour in pressure gradient driven 
laminar flow and under constant 
temperature wall conditions. Although we 
work with a specific type of fluid within the 
family of fluids the results obtained are 
representative of the behavior of fluids in 
this class. The solution of the nonlinear field 
and constitutive equations is obtained via 
hierarchical regular perturbation problems 
derived through the expansion of the field 
variables into asymptotic series in terms of 
the Weissenberg number Wi. The thermal 
field is solved in tandem with the velocity 
field. The solution at the zeroth order is the 
Newtonian field in a straight pipe of non-
circular contour, Letelier & Siginer11,12. 
Thus the thermal field at the zeroth order 
represents the temperature distribution in a 
Newtonian fluid in a tube of arbitrary 
contour.  Additional longitudinal fields due 
to viscoelastic effects appear at the second 
and third orders together with the secondary 
field at the third order, Letelier & 
Siginer11,12. The thermal field at the first 
order is null, a consequence of a null first 
order velocity field. At the second order the 
longitudinal field is affected by the 
viscoelastic nature of the fluid, by both 
shear-thinning and first normal stress 
effects, and as a consequence the thermal 
field is altered separately with additive 
superposed effects by shear-thinning and 
elasticity. The longitudinal field is further 
changed at the third order with a 
corresponding change in the thermal field, 
but more importantly at this order a 
secondary flow triggered by unbalanced 
second normal stresses brings large changes 
to the temperature distribution and heat 
dissipation. 
               
II. MATHEMATICAL ANALYSIS 
        The structure of the class of nonlinear 
viscoelastic fluids of interest in this work 
has been described at length in Letelier & 
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Siginer13. A summary is given here for 
completeness. The family of single mode 
constitutive structures which relates the 
deformation measure D to the viscoelastic 
contributed stress tensor τ is defined by 

Dτττ m2)tr,( η=λ+ε
o

of          (1) 
                                                                            
through a relaxation time λ, a molecular 
contributed viscosity ηm and a function f 
related to the elongational properties of the 
fluid, both to be defined shortly.  The total 
stress σ is written as                   
                                                                            

τDIσ +η+−= N2P                                    (2) 

with P and ηN representing the pressure field 
and the Newtonian viscosity of the 
continuum, respectively. The class of 
nonaffine constitutive models represented 
by (1) includes the Johnson-Segalman and 
Phan-Thien-Tanner models framed in terms 
of the Gordon-Schowalter convected 

derivative )(
o

• , 

)( τDDτuττuττ ++∇−∇−=
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Where )(
•

• indicates the material derivative. 
The family of constitutive models defined 
by (1) has two constitutive parameters,εo 
and ξ apart from the relaxation time λ and 
other constants embedded in the molecular 
viscosity ηm. εo and ξ define the 
elongational  and the non-affine deformation 
of the material, respectively, as well as the 
shear-thinning ability of it. The deformation 
of the macroscopic medium is affine by 
definition, but polymer strands embedded in 
the medium may slip with respect to the 
deformation of the macroscopic medium. 
Thus each strand may transmit only a 
fraction of its tension to the surrounding 
continuum as the continuum slips past the 
strands. This kind of slippage is taken into 
account in the Gordon-Schowalter 
convected derivative by the material 
parameter ξ. When ξ= 0 there is no slippage, 
the motion becomes affine, the Gordon-

Schowalter derivative collapses onto the 
upper convected derivative, and shear 
thinning is entirely governed by the material 
parameter εo. 
       The function f(εo, tr τ ) in (1) may be 
defined as an exponential function of the 
material parameter ε as introduced  by Xue 

et al. [14], ⎟⎟
⎠

⎞
⎜⎜
⎝
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= ττ trtrf
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o η

λε
ε oexp),(  .    (2)                      

If the trace of τ is small a linear form can be 
used. The molecular contributed zero shear 
viscosity ηmo is introduced in (2).  If εo = 0 
that is f = 1 we obtain a model which can 
describe the response of fluids to forcing 
which lead to negligible elongational 
deformations. In elongational flows stress 
develops a singularity with f = 1 and stress 
growth in steady-state extension becomes 
unbounded. The molecular viscosity ηm 
which appears in (1) is defined in terms of 
the shear rate 2/12 )2( Dtr=κ , λ, ξ and ηmo, 
                                                

mη = 2/)1(22

22

)1(
)2(1

mmo −+
−+
κλ

κλξξη  .  

The power-law index m is always m≤1. The 
zero-shear rate viscosity of the fluid is 
defined as, moNoo η+η=η . Noη  is the zero-
shear rate viscosity of the Newtonian 
solvent. Total stress (2) is rewritten as, 
                                                     

τDIσ +β−η+−= )1(2P o , 
o

mo

η
ηβ =      .  

Setting β equal to one yields a fluid, whose 
total viscosity is contributed by the long 
chain molecules only. Further setting m = 1 
one obtains, 

cteηηη moo === , oµη=µηβ=mη               
22 ξ)ξ(2λ1 κ−+=µo  

We note that setting µo = 1 will not lead by 
itself to a prediction of rectilinear flow in 
tubes of non-circular contour but setting  

)tr,( τoεf  = 1  will no matter the value 
assigned to µo as the apparent viscosity and 
the second normal stress coefficient become 
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proportional. If both µo = 1 = )tr,( τεf  the 
apparent viscosity and the second normal 
stress coefficient become constants                                                 

ooo ξληκψληκψηκη −=== )(,2)(,)( 2
2

2
1

2  
and no secondary flows can be predicted. 
    
II.1  Field equations 
         The balance equations read as, 

iji,ij,i uuρ σ=              0u ii, =        

ijijij Pδ τσ +−=                                                                                                                                              

Where ρ and P are scalar parameters 
representing the density and the total 
pressure field. Setting β equal to one and 
introducing dimensionless variables, 
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based on the molecular contributed zero 
shear viscosity ηm0  (assuming ηN0 ~ 0),  a 
characteristic velocity  V0 and a 
characteristic length a, and adopting the 
linear form of )tr,( *

ijτε*f ,  the constitutive 
and balance equations are rewritten in 
dimensionless form in a cylindrical frame  
with the velocity components u = (u, v, w) 
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rF , θF and zF represent the viscoelasticity 
contributed force components in the 
momentum balance, 
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         The heat diffusion equation defines the 
thermal field, 

 T
Dt
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Where  α is the thermal diffusivity. The 
dimensionless temperature field T* is 
introduced 

)z(T)z(T
)z(T)z,,r(T

)z,,r(T
wm
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−
−θ

=θ . 

Tw and Tm denote the constant wall 
temperature and the average temperature, 

respectively,  with ∫∫=
s

m wds
A
1V  
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∫∫=
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We consider the case of a constant heat flux 
along the pipe wall, that is 
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The temperature at any given cross-section 
is constant in time, but there is a 
longitudinal temperature gradient. The 
dimensionless heat diffusion equation reads 
as 
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Where Pr stands for the Prandtl number, 
and the dimensionless average temperature 
gradient a0 has been introduced, 

,
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The star notation is omitted from here on, 
and unless noted otherwise the variables and 
the expressions used are dimensionless. 
 
II.2 Solution of the field equations 
      The balance and constitutive equations 
are solved by expanding the field variables 
in power series in terms of the Weissenberg 
number Wi. The expansions in power series 
of the field variables 
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are used in the linear momentum and the 
non-linear constitutive stress-strain 
relationship to obtain  hierarchical regular 
perturbation problems. 
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The solution which satisfies mass 
conservation is given by, 

[ ] 0
20 )sin(1 wpnrrpw n =+−=〉〈 θε ,       

 0 < ε < 1,     n > 1.                                    (5)   
We note that )nsin(rn θ  as well as 

)ncos(r n θ are part of the infinite set of 
homogeneous solutions of the Laplace 
equation  and we could as well have used a 
superposition 
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n = 1, 2, 3, …, N,                                             (6)      
where a constant phase angle θn has been 
introduced. We note that to satisfy the no-
slip condition on the contour ∂D we must 
have 

.0   n sinrr1          ,0 w n2
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Equation (7)2 is called the shape factor and 
defines a mapping of the basic circular 
cross-sectional shape into various non-
circular shapes through the parameters ε and 
n. Varying the parameters continuously in 
the ranges indicated in (5) correspond to a 
continuous deformation of the circular 
contour. For instance n=4, ε=0.22 
corresponds to a square.  A sharp right angle 
corner is not possible to attain exactly as a 
curvature however very small is required at 
the corner for continuity. But from a 
practical point of view this does not carry 
any importance as the corner can be made 
indeed quite close to sharp by varying ε. 
The phase angle θn leads to a rotation of the 
mapped contour in the (r,θ) plane. Equation 
(6) may be conceived of as the superposition 
of a finite number of solutions of type (5), 
each one rotated by a certain angle with 
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2
1 0

,
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respect to the others. Thus it is possible to 
superpose two or more mapped figures such 
as an ellipse (n=2, εc > ε> 0)  and a triangle 
(n=3, εc > ε> 0) either one rotated by a 
certain angle with respect to the other to 
obtain say tear drop shaped contours 
commonly used in extruders. If ε exceeds a 
critical value εc introduced in the next 
paragraph the mapping is no longer a closed 
curve. Note that for n=2 and n=3 and 
different numerical values assigned to ε one 
gets ellipses with different aspect ratios, and 
triangles with varying degrees of curvature 
of the sides and in particular varying 
degrees of sharpness at the corners. n=3 and 
ε=0.385 yields a triangle with straight sides 
and sharp corners.   
      Shape factor may not yield closed 
curves for arbitrarily assigned pair of values 
for (ε, n). For closed curves the value of ε 

can not exceed an upper limit εc = f (n). The 
latter comes out of the requirement that at a 
cusp the velocity gradient should be zero: 
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In practice ε  assumes fractional values and 
admissible closed form shapes are given 
only by integer values of n. Assuming that 
the boundary ∂D0 of the domain D0 of the 
flow is a circle, a continuous deformation of 
the circle is observed with increasing values 
of  ε > 0 for a fixed integer n up to a limiting 
closed boundary with n sharp corners or 
cusps obtained when ε  is equal to a critical 
value εc .  
      The extension of these concepts to 
unsteady flows is not straightforward. For 
unsteady flows in conduits of 
unconventional shape the following ansatz 
can be made with ε<1, 
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where w0(r, θ, t) is the closed form axial 
velocity field of the base flow , that is the 
velocity field in the base domain D0 
corresponding to flow in a tube with a 

known contour ∂D0  such as a circle. 
Determination of the function H1 yields the 
first correction to the axial velocity field in 
the mapped contour ∂D. These ideas were 
applied recently by Letelier et al.15 and 
Siginer and Letelier16 to the quasi-periodic 
flow driven by a pulsating pressure gradient 
of an integral viscoelastic fluid of the fading 
memory type in straight conduits of 
arbitrary shape. 
The thermal field at this order is defined by 
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 II.2.2 Temperature field at order ( )WiO : 

            u<1> = v<1> = ><1w , 0T 1 =>< . 
 
II.2.3 Temperature field at order ( )2WiO :  
 
u<2> = v<2> = 0. 
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II.2.4 Temperature field at order ( )3WiO : 
       The defining equation for the 
longitudinal velocity at this order is: 
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It turns out that the contribution of the last 
term in the above equation is zero regardless 
whether µo = 1 or not, that is the 
longitudinal field is not affected by the 
constitutive constant εo up to and including 
the third order in this analysis. 
         As in the previous orders we introduce 
a streamfunction for the transversal velocity 
field and derive for the PTT fluid: 
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The solution for w<3> is, 
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The thermal field at this order is given by 
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II.3 Computation of the Nusselt Number 
        The Nusselt number Nu is defined as, 

             ( )mw
h

h

TT
GradD

k
hD

−
==Nu                   

P
A4

Dh =              ( )∫ •∇−= dlT
P
1Grad n  

Dh denotes the effective or hydraulic 
diameter defined in terms of the area A and 
the perimeter P of the cross section. The 
average temperature gradient, the wall 
temperature, the average temperature and 
the outward unit normal vector are 
represented by “Grad”, Tw, Tm and n, 
respectively. 
 
CONCLUSIONS 
       Inertial as well as elastic effects in the 
laminar flow of a class of non-affine 
viscoelastic fluids have been investigated in 
pressure gradient driven flow in straight 
tubes of non-circular shape. An asymptotic 
solution of the field and constitutive 
equations is obtained via a regular 
perturbation solution with the Weissenberg 
number Wi as the parameter. 
Unconventional cross-sectional shapes 
result from a continuous one-to-one 
mapping taking the circle into the desired 
shape such as the ellipse, the triangle and 
the square. The longitudinal field is 
determined up to and including the third 
order in Wi.  Heat transfer due to shear 
thinning controlled by the slippage 
parameter is identified as well as the heat 
transfer enhancement due to secondary 
flows. Examples of total heat transfer 
enhancements for an ellipse and a triangle 
are given in the following figures with 
corresponding secondary flow patterns. 
Details of the computations can be found in 
the forthcoming publications by Siginer and 
Letelier12, 13. 
 
ACKNOWLEDGEMENTS 
         The support of the Chilean Foundation 
for Research and Development 
(FONDECYT) is gratefully acknowledged, 
Grants No. 1010173 and 7010173 

143



Nu v/s λ
(n=3;ε =0.384;ξ =0.3)

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5

λ

Nu

Re=1

Re=50

Re=100

Re=150

Re=200

Re=250

    
 

Figure 1. Nusselt number Nu versus 
Weissenberg number Wi :equilateral triangle 

ξ=0.3, n=3, ε=0.384 
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Figure 2.  Isotherms : 
Re=200, Pr=50, Wi=0.3, ξ=0.3 
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Figure 3. Secondary flows 

Re=200, Pr=50, Wi=0.3, ξ=0.3 
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Figure 4. Nusselt number Nu versus 
Weissenberg number Wi - ellipse 

ξ=0.3, n=2, ε=0.4 
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Figure 5. Isotherms : 
Re=200, Pr=50, Wi=0.3, ξ=0.3 
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Figure 6. Secondary flows 

Re=200, Pr=50, Wi=0.3, ξ=0.3 
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