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ABSTRACT 
The correspondence principle states that 

a class of viscoelastic problems may be 
solved, provided that the solution of the 
corresponding elastic problem is known1. 
Here it is shown that one of its consequences 
is that the linear viscoelastic properties of a 
material can be obtained using a non-
viscometric geometry. 

 
INTRODUCTION 
      The correspondence principle has been 
widely used in rheology, and in mechanical 
engineering generally. Its use has recently 
been extensively discussed by Hilton2, who 
described four classes of the principle, and 
the conditions under which these apply. 
These classes refer to the nature of Poisson’s 
ratio, ν, which is the ratio of the transverse 
contraction strain to the extensional strain 
when a rod is stretched.  

For no volume change on extension, 
Poisson’s ratio would be 0.5, for no 
transverse dimensional change, it would be 
zero. For many engineering materials such 
as many metals and concrete, a value of 
between 0.2 and 0.4 is often quoted,  
although Poisson’s ratio is known to be a  
complex function, that varies with frequency 
in both magnitude and phase3. Little 
information is available in the scientific 
literature on the phase of Poisson’s ratio, 
presumably because of the difficulty of 
making the measurements, but for many of 
the types of soft materials that rheologists 

are used to dealing with, Poisson’s ratio is 
close to 0.5 over a broad frequency range. 
Since this amounts to a condition of 
incompressibility, it seems reasonable to 
assume that there is no phase difference 
between the extensional and transverse 
strains. These conditions correspond to the 
third of Hilton’s classes. One consequence 
of the conditions is that, for a linear 
viscoelastic material in the absence of 
inertia, if an oscillating stress of any form is 
applied to a sample, the phase lag between 
the stress and the strain will be the same at 
every point in the sample. For a linear 
viscoelastic material, Trouton’s ratio, the 
ratio of extensional to shear viscosity, is also 
constant, with a value of 3. According to the 
correspondence principle, therefore, the ratio 
of the complex shear viscosity, η∗(ω), to the 
complex extensional viscosity, ηΕ*(ω) must 
also be constant with a value of 3. This 
means that an arbitrary set of stresses can 
applied to sample to provide its linear 
viscoelastic properties, provided that the 
result has previously been obtained for a 
known sample.  

 
VISCOMETRIC GEOMETRIES 

Viscometric measuring systems 
(geometries) are those for which the stress 
and strain fields are well defined. Such 
geometries include the small angle cone and 
plate and the narrow gap concentric cylinder 
system, and the reason for their use by 
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rheologists is that they enable the sample 
material functions to be readily calculated. 

The operating variables of a rotational 
rheometer are the torque, M, and the angular 
displacement, φ, or angular speed, Ω, where 
Ω = dφ/dt. These are converted to the 
rheological variables, stress, σ  ̧and strain, γ, 
or strain rate, γ� , through factors which 
depend on the measuring system type and 
dimensions. Thus σ = Fσ M and γ = Fγ φ. For 
a small angle cone and plate, for example, 
Fσ = 3/2πR3 and Fγ = 1/β, where R is the 
plate radius, and β is the cone angle4. For a 
Hookean elastic material, since the ratio of 
stress to strain is constant, the two factors 
can be replaced by a single measuring 
system factor, Fg = Fσ / Fγ. For the cone and 
plate Fg = 3β/2πR2. For viscometric 
geometries, the various factors have been 
derived analytically for the full viscoelastic 
case. However, if the correspondence 
principle can be relied on, then the full 
viscoelastic solution is not necessary. We 
can simply write that, since the Hookean 
elastic shear modulus G = Fg M / φ, the 
(linear) complex shear modulus 
G* = Fg M* / φ*, and the (linear) complex 
viscosity η* = Fg M* / Ω*. For the usual 
rheological case of Hilton’s class 3, these 
relationships apply whatever the nature of 
the deformation: whether shear, extensional 
or a mixture of both. 

 
NON-VISCOMETRIC GEOMETRIES 

None of the above discussion would 
matter much if the properties of all samples 
of rheological interest could be determined 
using the standard geometries, but of course 
they cannot. Some samples have large 
particles, others may sediment or slip at the 
geometry wall. Moreover, it is difficult to 
take a specimen of, for example, a set 
yogurt, from its container and load it onto a 
rotational rheometer without damaging it. If 
the correspondence principle can be 
invoked, then a non-viscometric geometry of 
suitable form can be used. All that is 

required is calibration of the geometry with 
a material of known properties to provide 
the measuring system factor, Fg. 

 
Calibration of the measuring system 

This can easily be done using, for 
example, a standard Newtonian oil, since 
Fg = Ω η / M (of course, it would be wise to 
check the calibration using several oils, each 
over a range of torques). Calibration of this 
type does not provide the stress or strain 
factors, only the ratio of the two. 

 
STARCH 

Starch is used as a rheology modifier in 
many foodstuffs. As a raw material, it is 
normally supplied in the form of 
approximately spherical granules, with 
diameters between about 1 µm and 100 µm. 
To be used as a rheology modifier, starch 
must undergo gelatinization, which occurs 
when the granules are disrupted in aqueous 
environments, to swell and eventually 
release the constituent molecules. The 
temperature at which this process 
commences will depend on the nature of the 
starch, but it is usually above about 60°C. 
The process is thermally irreversible, and 
when the temperature is reduced, the system 
remains gelatinized, although some slow de-
gelatinization (retrogradation) may occur. 

 This process is not easy to monitor 
using standard geometries. At low 
temperatures the granules sediment, and a 
impeller-in-cup measuring system has been 
developed for use in the food industry, that 
prevents this from happening (Fig. 1) This 
geometry is designed to be used in constant 
rotation, which means that the sample is 
always being subjected to shearing, and as 
the geometry is non-viscometric, the shear 
rates and stresses involved are not known.  

 



 
 
Figure 1: impeller designed for use with 

starch 
 

A more useful way of monitoring the 
kinetics of starch curing would be to use a 
viscometric geometry with low amplitude 
oscillation. The principle discussed here 
allows this. The starch is held in suspension 
by the paddle at constant rotation, until the 
unset of gelation, when the operating mode 
is switched to low amplitude oscillation. 
 
RESULTS 
 
Shower gel 

Fig. 2 shows the results obtained for a 
commercial shower gel using the impeller-
in-cup measuring system designed for use 
with starch samples, compared with those 
obtained using a standard 40 mm diameter 
parallel plate. Fg for the impeller-in-cup was 
found to be 11020 m-3. Data are shown as 
the magnitude of the complex modulus, 
|G*(ω)| and phase angle, δ, plotted against 
angular frequency. If the correspondence 
principle holds, the phase angle at each 
frequency will be the same for the two 
geometries. Correspondence between the 
|G*(ω)| values is achieved by using the 
appropriate value for Fg. 

There is good agreement between the 
two data sets, apart from at high frequencies, 
where the inertia of the sample becomes 
significant (this shows one possible source 
of error of the method).  
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Figure 2: log |G*(ω)| (squares) and δ 

(circles) for shower gel using impeller-in-
cup (filled symbols) and parallel plate (open 

symbols) 
 

Starch 
Results for a hydroxethylated dent corn 

starch are given in Fig. 3, which shows log 
G′(ω) and log G″(ω) plotted against global 
time, i.e. time after commencement of the 
experiment. Oscillation frequency was 1 Hz. 
Temperature profile was: hold at 35°C for 1 
minute, raise to 95°C  over 4 minutes, hold 
for 6 minutes, reduce to 35°C  over three 
minutes, and hold for 7 minutes. The 
impeller was rotated at a constant angular 
velocity of 16.8  rad s-1, until the starch 
started to gel, at about 3.9 minutes. 
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Figure 3: log G′(ω) and log G″(ω) against 

time for a a hydroxethylated dent corn starch 
 
 



CONCLUSION 
It has been shown that the 

correspondence principle can be used to 
allow the linear viscoelastic properties of 
materials to be detrmined using non-
viscometric geometries. 
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