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ABSTRACT

A finite element method has been used to
simulate the deformation of gel beads dur-
ing uni-axial compression. The simulated
data has been used to investigate an exper-
imental method for obtaining an apparent
elastic modulus (Eapp) of single beads. The
results indicate that the measured modu-
lus is related to the shear modulus (G) as
Eapp ≈ 4.4G.

INTRODUCTION

In order to characterize the mechanical
properties of polymer gel beads a setup
where a single bead is compressed uniax-
ially has been studied. During compres-
sion the applied force, the axial displace-
ment and the central lateral expansion are
recorded. Using these data stress-strain
curves are derived from which it is de-
sired to extract the elastic shear modulus
G. Similar studies have been carried out
previously1,2 using the classical theory of
Hertz3 on force-displacement data. How-
ever, for the setup in the present studies
it is more desirable to extract the elastic
modulus from stress-strain curves. The
possibility to do this is investigated here
by modeling the compression using a finite
element method and comparing simulated
data with real measurements.

MODEL DESCRIPTION

The notion used here is that of Bird et
al.4 The model is based on the momentum
balance with inertia and gravity neglected.

Furthermore, the beads are assumed to be
incompressible so that the equation of con-
tinuity is satisfied. The stress tensor τ is
split into a purely viscous part and a purely
elastic part using the neo-Hookean consti-
tutive equation for the elastic part. The
stress tensor is thus given by

τ = −µγ̇ + Gγ [0] (1)

where µ is the viscosity, G is the shear
modulus, γ̇ is the rate of strain tensor and
γ [0] is the upper convected relative strain
tensor. The finite element formulation of
the model is obtained by multiplying the
momentum balance and the equation of
continuity with a trial function φ and in-
tegrating over the cross-section (S) of a
sphere, c.f. Eq. 2 and Eq. 3 (axial sym-
metry so no changes in θ).

0 =

∫

S

φ∇ · (p + τ )dS (2)

0 =

∫

S

φ(∇ · v)dS (3)

The finite element model is then dis-
cretized using linear triangular elements
both for velocities and pressures. This
method, however, needs an additional
term added to the incompressibility con-
dition in order to stabilize the system of
equations5. The error added by introduc-
ing this term is smaller than the discretiza-
tion error and can thus be made negligible.

RESULTS AND DISCUSSION



The simulation is carried out on a ge-
ometry corresponding to a quarter sphere.
In Figure 1 a mesh deformed to 70% can
be seen. During the simulation the axial
force (F ) is calculated from the nodal pres-
sures and elastic stresses. The macroscopic
strain (γ) is defined as the relative central
lateral expansion of the sphere, i.e.

γ(t) =
R(t)

R0
(4)

where R(t) is the radius at time t and R0

is the initial radius. The axial stress at
time t acting on the compression interface
is defined as the force divided by the area
of the central lateral cross section, i.e.

σ(t) =
F (t)

πR(t)2
(5)

As mentioned above stress-strain data
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Figure 1: Mesh which has been deformed 70%.
Original geometry was the cross-section of a
quarter sphere.

from real measurements show an initial
linear part from which an apparent mod-
ulus is obtained. The simulated curves
also show this initial linear dependence
and therefore it can be investigated if the
apparent modulus is related to the shear
modulus G by carrying out simulations
with various values of G while keeping µ
constant (and small to avoid viscous con-
tributions to the force). These simula-
tions show that the slope of the linear part
(Eapp) scales with the shear modulus ap-
proximately as Eapp = 4.4G. This in-
dicates that the apparent modulus is in

fact related to the real shear modulus and
therefore the experimental method seems
to be valid. In Figure 2 a comparison
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Figure 2: Comparison of a simulated curve
with an experimental curve. Also shown is
the a linear fit to the experimental curve up
to γ = 1.10. Simulation was carried out with
µ = 1.2 · 10

4Pa · s and G = 1.2 · 10
5Pa.

of a simulated curve and an experimental
curve can be seen. From this figure it is
seen that good agreement is observed at
low strains γ < 1.22. However, the model
is not able to describe real behaviour at
large strains which indicates some degree
of strain hardening in the real beads. Fur-
thermore we have noted that it is not pos-
sible to simulate purely elastic behaviour,
i.e. R0G >> µ(−ḣ), up to large strains be-
cause of instability problems. We are, how-
ever, most interested in data at low strains
and therefore the instability issues are not
critical.
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