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ABSTRACT

Different effects of linear viscoelasticity
on the propagation rate of surface gravity
waves on fluids on an infinitely deep fluid
layer is outlined. Emphasis is put on
explaining small frequency waves where
gravity dominates and high frequency waves
where elasticity dominates the driving force
for the waves.

INTRODUCTION

Surface gravity waves are easily observed
in nature. Common to most people are the so-
called water waves. These waves can be seen
on sea or lake surfaces.

There are two frequently studied cases for
surface gravity waves. The first case is the
shallow water wave. In this case the wave
length is much larger than the average water
depth. For a shallow water wave the phase
velocity, Cph, is given by cpn=(gh)0-3, where
g is the gravitational acceleration and h is the
average fluid depth.

The second frequently studied case is the
deep water wave problem, in which the wave
length is less than twice the average fluid
depth. When using this condition the fluid
motion can be treated as wave motion on an
infinitely thick layer of fluid.

Wave modes similar to the water wave
modes may exist on the surface of an elastic
body. These wave modes, normally referred
to as Rayleigh-waves are frequently observed
in connection with earth-quakes. These waves
are non-dispersive as the phase velocity is
independent of the wave length.

Earlier, water waves and Rayleigh waves
were treated as separate subjects. In 1990 it
was shown that deep water wave theory and
Rayleigh wave theory is unified if the wave
problem is treated as gravity waves on a

Maxwell fluid!. In this note, surface gravity
waves on a viscoelastic liquid with infinite
depth will be discussed. Emphasis will be put
on discussing wave propagation at the limit of
low and high frequency of the waves, to
illustrate both the water wave limit and the
Rayleigh wave limit.

PROPAGATING WAVES WITH ZERO
SHEAR STRESS AT THE FREE SURFACE
Waves exhibiting a spatial decay

The equations describing the fluid motion
resulting from the waves are outlined in this
section. The fluid velocity is described using
complex potential functions. as shown in Eq.
1 and 2:
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The two complex potential functions are
given as shown in Eq. 3 and 4:
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In these functions (x,y) are the spatial
coordinates, k is the wave number, o is the
frequency, m is a spatial damping factor
determined by the equation of vorticity and i is
the imaginary unit.

There are two different approaches to
gravity waves. The approach outlined in this
section is the development of waves
exhibiting a spatial decay: The waves are
generated at a point with a given frequency.
The wave amplitude decreases when the wave
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propagates along the horizontal axis. Thus the
wave amplitude is a function of the horizontal
spatial coordinate only. In this approach the
wave number is a function of the frequency,
k=k(w). The phase velocity of this wave is
easily found since o=Re(k)cph.

The equation of vorticity give the
following requirements for the spatial
damping factor, m (Eq. 5):

m* =k —i22(1-ilo) (5)
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where p 1s the viscosity, p is the density and
is the Maxwell fluid time constant. In the
process of solving the equations of motion,
the spatial damping factor, m will appear in
the power of 1. To be able to use the vorticity
equation this equation has to be squared. The
squaring operation introduces false solutions
that have to be removed.

In developing the characteristic equation,
the vertical component of the equation of
motion is linearized and integrated to
determine the pressure as function of the
potential functions. The integrated pressure
equation is used in the normal stress boundary
condition at the free surface, which is
linearized around y=0. This normal stress
equation at the free surface along with
requiring the shear stress to be continuous at
the free surface make a determinant that has to
be zero2.

It is convenient to make the flow
calculations using dimensionless quantities.
These dimensionless quantities are defined by
fluid properties only, as shown in Eq. 6-9:
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In these Eq. 6-8 the hat () denotes
dimensionless quantities. Since only
dimensionless quantities will be discussed,
the hat is dropped in the remaining part of the

article. In Eq. 10 © is the dimensionless
Maxwell fluid time constant.

The characteristic equation in
dimensionless form is given by Eq. 10. In
this equation the spatial decay parameter m

appears in terms of m2, only. Thus, as stated
earlier, all solutions must be tested with the
requirement that Re(m)>0.
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where:
Bo= -w4(1-ibw)4
Bi= 204(1-ibw)*
Bo= —(1-i0w)* - 8im3(1-ibw)3
Bs3= 8io(1-i00)3
B4= 2402(1-i6w)?
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The solution of Egq. 10 with the
requirement that Re(m)>0 becomes the
inviscid solution in dimensionless form as

shown in Eq. 11 when @ — 0.

k= (11)

In the case where @ — o= it is expected
that the solution is equal to the non-dispersive
solution of waves demonstrating a temporal
decay as dissipation is negligible.

Waves exhibiting a temporal decay
Within fluid mechanics research it is more

common to studv waves that exhibit a
temporal decay. This approach gives similar
results for water waves. However, when the
viscosity exceeds 1 Pas and the wave length is
less than 0.5 m, the results are significantly
different.

Waves exhibiting a temporal decay have
equal amplitude at all horizontal positions at a
given time. As the waves propagate the whole
sheet of waves decay equally. Thus there is a
temporal decay. The temporal decay is
described by slightly different potential
functions than shown in Eq. 3 and 4. The
potential functions used within the temporal
decay theory are shown in Eq. 12 and 13.

o= Aek)'eik(x—vl) (12)
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The characteristic equation resulting from
Eq. 12 and 13 is different than that from Eq. 3
and 4. In this case the phase velocity appears
as the real part of c, and the damping rate
appears as the imaginary part of c.
Furthermore, the wave number k is now real.
Thus, ¢ is a complex function of the real
parameter k: c=c(k). This is different from the
spatial decay theory where the characteristic
equation is given as k=k(w), where k is
complex and w is real. As stated earlier the
phase velocity can be found from both
methods as shown in Eq. 14
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The development of the characteristic
equation is equal for the two different decay
approaches, except for the different potential
functions. The long wave solution exists in
the limit & — 0. For waves exhibiting a
temporal decay with the requirement that
Re(m)>0, the long wave solution equals the
inviscid solution. This is also the case for
waves exhibiting a spatial decay.

In the case of infinitely short waves,
where k — o, the solution is equal to the
Rayleigh wave solution. In this case the
dimensionless phase velocity is given as
shown in Eq. 15.
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where:

B =8+ /19008 - 136 — //19008 + 136

PROPAGATING WAVES WITH ZERO
HORIZONTAL VELOCITY AT THE FREE
SURFACE

The liquid content of a surface layer of a
viscous fluid is often low compared to the
fluid itself. This may result in the formation of
a dry inelastic surface layer with no surface
tension. The horizontal fluid motion at such a
layer can be impossible. The boundary
condition at the free surface is no longer a
continuous shear stress. It is significantly
simplified: The horizontal velocity component
vanishes at the free surface. In this case the

characteristic equation becomes as shown in
Eq. 16 for the case of waves exhibiting a
spatial decay, and Eq. 17 for waves exhibiting
a temporal decay.

(k- )m =k (16)
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These equations must be squared to be
able to use the vorticity equation to remove m.
In the case of temporal decay approach, the
vorticity equation becomes:

m* = k* — ikc(1 - iOkc) (18)

Both in case of a spatial decay approach or
a temporal decay approach the solution with
vanishing horizontal velocity at the free
surface gives a phase velocity equal to the
phase velocity on an inviscid fluid. There
exists, however, no solution in the short wave
limit. No solutions can be found where the
fluid motion decays with depth in this case.

A Rayleigh type solution may exist for
large dimensionless time constants, @. This
solution is terminated and does not exist for
frequencies greater than approximately @0-3 in
the case of spatial decay approach. In the case
of temporal decay approach the maximum
wave number where solutions can be found is
in the vicinity of k=0.

CONCLUSION

The phase velocity of long linear gravity
waves on an infinite layer of fluid can be
described by inviscid theory. If the fluid is a
Maxwell fluid the infinitely short waves
become Rayleigh waves if the shear stress is
continucus at the free surface. If the
horizontal velocity at the free surface vanishes
there can not exist Rayleigh wave solutions
for infinitely short waves.
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