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ABSTRACT

An algorithm which determines the
complex modulus in roughly half the
experiment time needed for a reliable
analysis by Fourier transformation has been
developed. The algorithm is based on
Boltzmann's superposition principle and the
existence of a relaxation time spectrum.

INTRODUCTION

The use of computers for the generation
of arbitrary stress or strain inputs and
subsequent analysis of rheological data raises
the question of how to extract maximum
information about a material in a given
experiment time.

Measuring the complex modulus over a
range of frequencies is a time consuming
process and the measurements at the lowest
frequency typically takes about half of the
total measurement time. Holly et al.' have
shown how to shorten the total measurement
time by applying a strain which is a sum of
sinusoids of different frequencies to the
sample and extracting the complex modulus
from steady state data by Fourier
transformation. ’

For measurements at low frequencies, the
absolute time to obtain the steady state
needed for Fourier transformation is long.
However, the data taken before steady state
also. reflect the material properties and an

analysis algorithm capable of extracting the
complex modulus from these data has been
developed.

The algorithm can determine the complex
modulus in about half the experiment time
needed for a reliable analysis by Fourier
transformation provided the signal-to-noise
ratio is sufficiently high to avoid averaging
over many periods. This is usually the case
for measurements on solids and melts but not
for dilute solutions.

DERIVATION OF THE ALGORITHM
The algorithm is derived with a strain
input but analogous equations can be written
for a stress input.
The stress response from a linear material
subjected to a strain is given by Boltzmann's
superposition principle:
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The stress relaxation modulus, G(f), is often
expressed by the discrete relaxation time
spectrum as
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Discretization of Eq. 1 with a time step At
and insertion of Eq. 2 yields
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The subscript pr is used with the stress
because Eq. 3 yields the predicted stress
from a given set of the coefficients, Gj, and
relaxation times, T

The relaxation times are fixed in order to
obtain a simple algorithm. The corresponding
optimum coefficients, Gj, are determined by
a least squares fit to experimental data, i.e.
the following equation is solved:
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Substituting Eqgs. 3 and 4 into Eq. 5 yields
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Both the matrix Au(k) and the vector b (k)
can be evaluated by adding the kth term to
the previous quantity. Furthermore the
quantity f{7,k) can also be evaluated
recursively from the previous value, f{j,k-1) .
Therefore it is unnecessary to store all stress
and strain values during the experiment.
Only the quantities A,(k), bk) and fiik)
need to be stored. :

Once the coefficients G; have been
determined, the complex modulus, G*(®),
can be calculated > by inserting steady state
sinusoidal data in Eq. 3:
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TEST OF THE ALGORITHM
In order to make a thorough study of the
applicability of the algorithm, it was decided

to try .it in all the different regions of an

amorphous polymer, i.e. from the melt to the
glass.

A series of computer simulated
experiments has therefore been carried out on
a material with a box and wedge relaxation
time spectrum which models an amorphous
polymer well 2.

A strain of the following form is applied
to the material:
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i.e. a fundamental frequency, w,, and seven
of its harmonics covering approximately two
decades. The amplitudes of the individual
frequencies are adjusted so that the stress
amplitudes become equal to o, . This ensures
that all frequencies are affected equally by
white noise which is added to the stress in
some of the simulations.

The frequency content of the strain input
determines which of the relaxation times in
the material are excited. It turns out that it is
sufficient to include relaxation times so that
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Furthermore, 3.3 relaxation times per decade
are needed to give good results, Finally, the
quantity f{(j,k) in Eq. 4 quickly vanishes as
Atft; » = so the smallest possible 7, is
of the order of the sampling interval, At,
Use of the strain in Eq. 9 therefore requires



15 relaxation times in the fit, and thus 15
coefficients, G, as fitting parameters.

RESULTS AND DISCUSSION

The complex modulus is obtained from
the simulated stress and strain data both by
the algorithm described above and by
conventional Fourier transformation.

Analysis of noise-free data from the first
period of the fundamental frequency, w,, by
the new algorithm gives the storage and loss
moduli well within 1.5 % for the applied
frequencies and well within 7 % for
frequencies which are about half a decade
lower than the lowest applied frequency, i.e.
0.5 w,. In the liquid region only the loss
modulus, which 1is several orders of
magnitude larger than the storage modulus,
can be determined but in this region the
viscosity is usually sufficient to characterize
the material.

Fourier transformation of the same data
gives errors of up to 30 % in the moduli
because the data do not represent steady
state. The errors are negligible only in the
liquid and glassy regions. Data from the first
period of the lowest applied frequency must
therefore be discarded and only data from
the second period analyzed by Fourier
transformation to obtain the moduli within
0.8 %.

When Gaussian white noise with a
dispersion of 2 % of the maximum stress
value is added to the stress, the new
algorithm is no longer capable of
determining the moduli down to 0.5 w,.
However, the moduli are still determined
within 5 % for all of the eight applied
frequencies - except in the liquid and glassy
regions where neither the new algorithm nor
Fourier transformation can determine the
smaller of G/(w) and G”(w). The new
algorithm therefore reduces the experiment
time needed to determine the complex
modulus by a factor of two compared to
conventional Fourier transformation.
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Another advantage of the new algorithm
is its flexibility with respect to the form of
the strain input. Successful analysis by
Fourier transformation requires periodic data
which cover an integral number of periods.
In contrast, no assumptions of periodicity or
an integral number of periods are made in
the derivation of the new algorithm.

For example, analysis of noise-free data
from 1/3 of the period of the lowest
frequency, w,, gives the moduli within 3 %
for angular frequencies down to at least

2n/T, where T is the experiment time.
Fourier transformation of the same data does

not make sense.

L ined coeffici

The coefficients, Gj, determined by the
algorithm only represent a discrete relaxation
time spectrum when the relaxation times
included in the fit are those giving the largest
contributions to the complex modulus at the
applied frequencies. The coefficients start to
fluctuate between positive and negative
values if the dominant relaxation times are
not included. However, the complex modulus
calculated from Eq. 8 is still well determined
by the fluctuating coefficients.
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