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ABSTRACT

Stable colloidal suspensions are, phy-
sically speaking, relatively simple systems.
Yet, they display a weaﬁh of rheological
phenomena. Here, systems are considered
in which stability is ensured by polymers
that are chemically grafted onto the par-
ticle surface. The general rheological be-
haviour and suitable scaling laws %or these
systems are reviewed.

INTRODUCTION _

Adding small, colloidal particles to a
Newtonian fluid can alter the rheological
behaviour drastically. The non-Newtonian
effects become very pronounced at higher
particle concentrations. The rheological
phenomena have been recently reviewed by
Barnes et al.!, the relation to structure and
colloidal parameters by Russel et al.2. If
the particles have a tendency to aggregate
together, adding one volume percent might
be enough to change a ﬂuic{)into a weak
solid, displaying elasticity and yield stress.
The rheology of flocculated systems is not
yet completely understood because of the
complexity and the flow-dependency of the
microstructure.

For colloidally stable systems, where
the individual particles do not stick to-
gether, the basic rheological phenomena are
well documented now, at least for spherical
particles. The viscosity curves and the dy-
namic moduli will be reviewed here for ste-
rically, i.e. polymerically, stabilized disper-
sions. Mod%l systems of this type can be
prepared that contain monodisperse sphe-
rical particles. They have been used to in-
vestigate the role of the various parameters
affecting the rheology.

COLLOIDAL FORCES

In a first step the contributing factors
have to be identified. The present discus-
sion is limited to systems containing mon-
odisperse spherical particles. Dimension-
less expressions are used for the parame-

ters, as originally introduced by Krieger®,

in order to generate generally valid relati-
ons. In flowing suspensions the hydrodyna-
mic forces are transmitted through the sus-
pending fluid. Hence they are proportional
to the viscosity n, of this fluid. Therefore
the viscosity 7 of the suspension is scaled
with 7,,, meaning that relative viscosities
are used:

M = 1/1m (1)

During flow the hydrodynamic forces
will tend to drag the particles along in a
convective motion whereas Brownian mo-
tion acts towards restoring the equilibrium
structure which exists at rest. The ratio
between the two forces, or between the cor-
responding time scales, provides a dimen-
sionless measure for the shear rate. In di-
lute systems it is given by a Peclet num-
ber. For nondilute systems the mobility of
a particle is strongly affected by its neigh-
bours and thus by concentration. This is
taken into account, following Krieger®, by
replacing the medium viscosity by the sus-
pension viscosity at the shear rate under

consideration. The result is a reduced or
dimensionless shear stress o,:
o, = nya®/kT (2)

where a is the particle radius, 4 the shear
rate, k the Boltzmann constant and T ab-
solute temperature.

Particle inertia might also interfere.
Hence a particle R,eynolgs number Re, has
to be considered:

Re, = pyya®/n (3)

Lacking systematic innformation about its

effect the Reynolds number is normally

ignored, but this might be an oversimpl-
cation.

If only hydrodynamic and thermal for-

ces would act on the particles (”Brownian



hard spheres”) the steady state viscosity
would be a unique function of o, (neglec-
ting Re,) for a given volume fraction of
particles. This function is known from ex-
periments on model systems {de Kruif et
al.!). Present theoretical predictions can
describe the experimental results quite well
(Russel®).

In most real systems the London-van
der Waals forces cause attraction between
the particles and thus induce flocculation.
Stability can be restored whenever an ade-
quate interparticle repulsion force is gene-
rated. In aqueous media electrostatic re-
pulsion can be used effectively. A more ge-
neral procedure involves attaching soluble
polymer molecules to the particle surface.
Under suitable conditions, and with a suffi-

cient surface density of chains, the polymer-

layers will induce a repulsion potential bet-
ween the particles. Using a characteristic
magnitude of the potential and the thermal
energy kT a ratio can be calculated which
provides a dimensionless expression ¥, for
the repulsion (Russel et al.?):

U, = a'r;nb/N (4)

where r, is the radius of gyration, n, the
segment density and N the number of seg-
ments in the polymer chain. For polymeri-
cally stabilized systems one thus expect for
the viscosity a relation:

nr = flo,, Wy, @) (5)

where ¢ is the particle volume fraction.

VISCOSITY CURVES

Stable colloidal dispersions are charac-
terized by viscosity curves displaying two
Newtonian plateaus separated by a shear
thinning zone. They can be described quite
well by:

M= Noo + (M0 = o) /[1 + (or/are)™] (6)

where the characteristic relative stress o,.,
the liniting Newtonian viscosities 7, and
e and the {actor m determine the curve.
The concentration dependence of the li-
miting viscosities can ge expressed by the
Krieger-Dougherty equation:

M = (1 = (8/@maz)]mes (7)
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Figure 1: Newtonian high shear viscosities
for several particle sizes

where {7]] is the intrinsic viscosity and ¢nqz
the volume fraction at which the viscosity
diverges. Systematic data are available for
suspensions of poly(methylmethacrylate)
(PMMA), (12-hydroxystearic acid), chemi-
cally grafted on the particle provides a po-
lymeric stabilizer layer (thickness 9 nm)
(Mewis et al., Mewis and D'Haene’). For
polymerically stabilized systems it is diffi-
cult to characterize the stabilizer layer suf-
ficiently to calculate ¥4. Therefore one at-
tempts to derive alternative characteristics
from the rheological data.

Different procedures can be used, de-
pending on the relative thickness and the
softness of the stabilizer layer. When its
thickness § is much smaller than the par-
ticle radius, the suspensions should behave
as those of Brownian hard spheres. The
volume of the stabilizer layer may not be
totally negligible with respect to the par-
ticle volume. This can be corrected by as-
suming hard spheres with a radius a + 6
and an effective volume fraction ¢.s calcu-
lated on this basis. The value of the latter
is obtained from a comparison between the
measured intrinsic viscosity and the theo-
retical value of 2.5 ("hydrodynamic layer
thickness”). ' '

If the said procedure works the rela-
tion between the Newtonian viscosities and
the effective volume fraction should be in-
dependent of particle size. From figure 1 it
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Figure 2: Limiting high shear viscosities as
a function of @rnss/Gmas

can be seen that this is not the case except
at the largest particle sizes. The volume
at maximum packing increases with incre-
asing 6/a and is larger than that for hard
spheres. Clearly the soft stabilizer layer
gets compressed in this case.

As a second approximation one can as-
sume that the n{¢.s) relation can still be
represented by eqn. (7) but that ¢,.. de-

ends on the softness of the stabilizer layer.
n that case the curves for sterically stabili-
zed systems would still coincide with those
for hard spheres if they are plotted as a
function of ¢ers/Pmaz. Figure 2 indica-
tes that this procedure is quite adequate
for the systems under consideration. Ob-
viously it should fail for very thick, soft
stabilizer layers or for soft particles. Such
systems could give rise to effective volume
fractions larger than unity. The dotted line
in fig. 2 illustrates this behaviour for a sam-
ple with a thick (36 nm) stabilizer layer,
1t can also be seen in the data by Wolfe
and Scopazzi® on microgels. The concen-
tration dependence of the viscosity then
gradually shifts from that for suspensions
of hard spheres to that of polymer soluti-
ons.

DYNAMIC MODULI

Colloidal dispersions are also viscoela-
stic. In Brownian hard spheres the ther-
mal motion entails "memory” and elastic
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Figure 3: Storage moduli for PMMA par-
ticles (a=65nm)

effects. In sterically stabilized systems the
compression of the stabilizer molecules cau-
ses elastic interparticle forces. At volume
fractions where the stabilizer layers over-
lap, this should give rist to elastic contribu-
tions such as storage moduli in oscillatory
experiments (Frith and al.?). The result of
such measurements is displayed in figure 3.

At low frequencies thermal motion is
faster than the convective motion and li-
quidlike behaviour is observed (see low fre-
quencies and low concentrations in fig. 3).
At high frequencies the moduli probe the

article interaction and hence stabilizer
ayer softness. If the relative positions of
the particles were known, the modulus-
concentration curve could in principle be
transformed into a relation between po-
tential and interparticle distance. Assu-
ming that the distance between particles
equals everywhere the average value gives
the same potential profile for the diffe-
rent particle sizes (D’Haene and Mewis'?).
Hence the result is expected to be physi-
cally meaningful.

The storage moduli and the interpar-
ticle potential are measures of the soft-
ness of the stabilizer layer. From the in-
terparticle potentials the distance of clo-
sest contact can be calculated. It can be
considered an effective hard sphere diame-
ter, from which the corresponding effective
hard sphere volume fraction ¢.s;4 can be
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Figure 4: Limiting high shear viscosities as
a function of the effectiv hard sphere vo-
lume fraction

derived. The result is shown in fig. 4. The
data for the different particle sizes supe-
rimpose well in this manner. It is conclu-
ded that the moduli can indeed be used to
predict the softness effect and thus the con-
centration dependence of the viscosity.

CONCLUSIONS

Polymerically stabilized dispersions
differ from Brownian hard spheres in that
a deformable polymer layer is present at
the surface. Because of this the usual sca-
ling laws for Brownian hard spheres do not
apply, ueither for the viscosities nor for
the dynamic moduli. If the stabilizer layer
is not extremely soft the major difference
with hard spheres, for the viscosities, is
the maximum packing volume. The sto-
rage moduli display a high frequency pla-
teau which probes the particle interaction
forces and thus the deformability of the sta-
bilizer layer. From the moduli the interac-
tion potential can be computed, which in
turn provides a means to calculate the ma-
ximum packing and the viscosity curves.
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